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collected data to minimize data collection and user bur-
den. In this paper, we present a machine learning-based 
approach for detecting hypertension, using a waist belt 
continuous sensing system that is worn overnight. Using 
24 hypertension patients and 24 healthy controls, we dem-
onstrate that our approach can differentiate hypertension 
patients from healthy controls with 93.33% accuracy. This 
represents a promising approach for performing hyperten-
sion classification in the field, and also we would improve 
its performance based on a large number of hypertensive 
subjects monitored by the proposed pervasive sensors.
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computing · Computing methodologies · Machine 
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1  Introduction

Hypertension is a condition in which one’s arteries have 
consistently elevated blood pressure, also referred to as 
high blood pressure. Hypertension affects one billion peo-
ple worldwide (WHO et  al. 2015), leading to increased 
risk of cardiovascular disease, heart attacks and strokes. 
The World Health Organization estimates that high blood 
pressure kills nine million people every year (WHO et al. 
2015). Problematically, hypertension often does not show 
any symptoms for many years or even decades. It is a silent 
killer that damages critical organs of the human body (Pod-
dar et  al. 2014). Indeed, many people are not aware they 
have hypertension (e.g., Li et  al. 2016; Wall et  al. 2014). 
In the US, an estimated 13 million people are unaware of 
their condition (Wall et al. 2014), while in China, 59% of 
people with hypertension are unaware of their condition (Li 
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et al. 2016). Given these statistics, it is clear that we need a 
technique for recognizing hypertension as early as possible 
to avoid significant damage to one’s body.

In the medical and healthcare community, heart rate 
variability (HRV) has emerged as a practical, noninva-
sive tool to quantitatively investigate cardiac autonomic 
deregulations which result from hypertension (Schroeder 
et  al. 2003). Reduced HRV can be also used as predictor 
of hypertension (Terathongkum and Pickler 2004). HRV 
measures the fluctuation between intervals of consecutive 
heartbeats and is usually detected using the interval vari-
ations between consecutive R peak to R peak (R-R inter-
val) values from an electrocardiogram (ECG) recording. 
Thus HRV analysis is a promising option for detecting 
hypertension.

Unfortunately, HRV analysis is limited in its usefulness 
for the many people who are not showing clear symptoms 
of hypertension. Such patients are at risk and may even 
have serious sub-clinical effects of hypertension (Feng 
et al. 2014). Almost all HRV data is collected in a clinical 
setting, using short (5-min) recordings while a patient is in 
a resting state, which may miss signs of HRV that occur 
rarely, or long (24-h) recordings, which require an expen-
sive, lengthy clinical visit. The ability to collect data in the 
field would address these issues of data collection length 
and cost. However, the gold standard for sensing during the 
longer sessions uses a holter monitor, a device that collects 
high quality data using wet electrodes but is not well suited 
for field use due to the expertise needed to use it properly. 
Field options exist, such as apple watch, but have not yet 
been tested for hypertension detection. A related concern is 
that existing data analysis techniques are designed for diag-
nosing hypertension from high quality clinical data, but 
may not generalize to lower-quality field data. These chal-
lenges limit our ability to detect and monitor the progres-
sion of hypertension.

In this paper, inspired by the short resting ECG test in 
clinical settings, we have developed a solution for collect-
ing ECG data overnight while sleeping, with two notable 
benefits: first, sleep is a resting state with less motion com-
pared to daytime activity, which results in less noise in the 
data; second, sleep durations are relatively long, so intrin-
sic subtle changes in dynamicity and complexity of HRV 
can be adequately reflected in the collected data. Our con-
tributions include:

A waist belt based heart-rate monitoring system to col-
lect ECG data in the field Unlike traditional systems with 
wet electrodes, the waist belt does not require a constant 
connection and can be correctly set up by an end user 
(rather than a medical professional). Unlike existing chest 
or wrist worn devices that use dry electrodes; the waist belt 
is expected to have fewer motion artifacts when used while 
sleeping. An arm moves more than the torso during sleep, 

and a chest-worn system is likely to be more effected by 
breathing motions. The tradeoff is that the belt does not 
collect the full QSR wave of an ECG signal, just heart rate 
(simple ECG signal). We show that this is an effective solu-
tion for capturing diagnostic-quality field data.

A novel algorithm for classifying patients as hyperten-
sive (or not hypertensive) based on the relatively imper-
fect, long-term data collected using our belt Our algorithm 
extends past work in HRV analysis for hypertension diag-
nosis by applying pyramid methods and feature pooling, 
initially developed for computer vision and signal process-
ing, to collect features over multiple time windows of the 
data. Our work is similar to the Discrete Wavelet Transform 
(Boureau et al. 2010), but does not apply frequency filter-
ing to decompose the input signal. Instead we use multi-
scale temporal resolutions. By building a pyramid at sev-
eral levels of temporal resolution, and then pooling the 
resulting features together, we can more effectively recog-
nize whether the input signal is from a subject with hyper-
tension or not.

We now briefly review existing sensors and algorithms 
for detecting hypertension and a few related conditions. 
Then, we present the data acquisition process and pre-
processing, feature extraction method and feature ranking 
methods, and our classification approach. Our evaluation 
shows that our approach has a sensitivity of 93.33% and a 
specificity of 93.33% on a test set of 30 participants (half 
of whom were hypertension patients), while a more typi-
cal approach using a feature vector that does not use pyra-
mid methods has a 80.00% sensitivity and 93.33% speci-
ficity. We end with a discussion of the limitations of our 
work, a summary of the advantages of the novel waist belt, 
and opportunities for future research directions, including 
potential improvements in our approach and its application 
in practice.

2 � Background

Although hypertension profoundly increases an indi-
vidual’s risk of various cardiovascular consequences (Shi 
and Yu 2013; Natarajan et  al. 2014), it can be difficult to 
detect especially before clinically relevant symptoms that 
can justify expensive testing are present. However, detect-
ing hypertension early is important to avoid damage to the 
body before it becomes clinically apparent.

The gold standard for diagnosing hypertension is blood 
pressure measurement in clinical settings. Unfortunately, 
hypertension usually has no warning signs or symptoms 
and may not be detectable from the simple blood pressure 
test, so many people do not realize they have it (Rosamond 
et  al. 2008), which leaves many people with undiagnosed 
hypertension. Since there is evidence that a detectable 
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decrease in autonomic nervous function (measurable in the 
HRV signal) precedes the development of clinical hyper-
tension (Schroeder et al. 2003), HRV can also be used for 
diagnosis (Terathongkum and Pickler 2004). For example, 
features of the HRV signal in both the time and frequency 
domain are decreased and potentially more variable among 
hypertension patients (e.g., Poddar et  al. 2014; Puente 
2010).

Thus, analysis of longer-term HRV has become an 
option for situations where hypertension is suspected but 
not severe enough to show up during a simple blood pres-
sure test as part of a short clinic visit. HRV is typically 
derived from ECG signals, which have long been a focus 
of attention in clinical settings due to their high diagnostic 
value (Poddar et al. 2014). More recently, attempts to mon-
itor ECG signals in the field have proliferated (e.g., Coyle 
et  al. 2010; Farotto et  al. 2015), with the goal of moni-
toring a variety of conditions. After reviewing that work, 
we discuss HRV analysis approaches that have been used 
for hypertension, and motivate the need for an alternative 
approach that can work with noisy field data.

2.1 � Monitoring ECG in the field

A number of research groups have focused on effective 
solutions for sensing ECG signals in the field. Functional 
textiles have been used to manufacture a garment for 
physiological monitoring, where ECG signals are success-
fully recorded using fabric sensing elements (Coyle et  al. 
2010; Curone et  al. 2010; Merritt et  al. 2009). Similarly, 
there exist commercial devices that detect ECG continu-
ously, such as the Zephyr Biopatch, a mobile and wearable 
chest-worn system (Rubin et  al. 2015). These approaches 
suffer from motion artifacts, which introduce noise in the 
acquired data.

Another approach for moving from the clinic to the field 
is to minimize the number of electrodes used for sensing, to 
reduce motion artifacts and increase wearability. For exam-
ple, in (Farotto et al. 2015), the authors investigated the fea-
sibility of synthesizing a 3-lead ECG signal from 3 separate 
wearable and wireless patches. In (Da He et  al. 2015), a 
wearable vital signs monitor uses one electrode placed on 
the mastoid area, and a second electrode on the posterior 
upper middle neck. Together, the two electrodes comprise a 
single-lead ECG. Both systems must be worn on a patient’s 
body, attaching to ECG electrodes or an ECG strap. Sepa-
ration of the electrodes from the body during normal daily 
activity is a concern due to its impact on data quality and 
analysis.

An even less intrusive approach is to piggyback ECG 
monitoring on other activities, by using coupling capaci-
tance to monitor ECG rather than electrodes. In particu-
lar, Sinabro monitors ECG during smart-phone use, by 

leveraging sensors integrated into the phone (Kwon et  al. 
2014). Electrodes have also been directly embedded into 
a bed to continuously sense presence, position, and ECG 
(e.g., Ito et al. 2013; Lee et al. 2015; Lim et al. 2007), in a 
bed-sheet (Wu and Zhang 2008), in a chair (e.g., (Kim et al. 
2006), in a wheelchair (Chou et  al. 2015) and in a toilet 
seat (Baek et al. 2008). These approaches are relatively dif-
ficult to move from home to home or person to person. In 
addition, because of the high impedance between the signal 
source (the heart) and the sensor, the signal quality is worse 
than from contact-based ECG systems.

As described in a recent review article (Acharya et  al. 
2006), these approaches are sensitive to motion noise, and 
are difficult to use during sleep when motion is less likely. 
In one study of such an ECG system being used during 
sleep (Lee et al. 2015), issues arose with motion artifacts, 
making it most useful for the relatively simple problem of 
sleep detection.

2.2 � Detecting hypertension

How well existing algorithms will perform in a field set-
ting is still an open question. However, a good starting 
place is to review algorithms designed for detecting HRV 
from high-quality clinical data. There are two common 
approaches for HRV analysis (Al-Tabbaa and Oweis 2014): 
linear methods that use time-domain and frequency-domain 
features (e.g., (Lewicke et al. 2008; Long et al. 2012) and 
nonlinear, entropy-based methods (e.g., Pincus et al. 1991; 
Lake et  al. 2002; Costa et  al. 2002). Time-domain analy-
sis considers the R-R interval length but, for example, can-
not discriminate between sympathetic and parasympathetic 
HRV changes. Thus, most previous work has combined it 
with frequency-domain measures (e.g., Ramirez-Villegas 
et al. 2011; Poddar et al. 2014). Frequency-domain meas-
ures focus more on sympatho-vagal activity. Most previ-
ous work calculates the power spectral density in various 
frequency ranges (e.g., Long et al. 2012; Sun et al. 2012). 
The power value in each frequency range reflects physi-
ological signals such as vascular mechanisms caused by 
negative emotions, sympathetic modulation of heart rate, 
parasympathetic activity, and sympatho-vagal balance. 
Finally, entropy-based methods have been popular because 
they were especially designed to deal with noisy time series 
signals (e.g., Signorini et  al. 2006; Ho et  al. 2011). Most 
previous work has used approximate entropy (Pincus et al. 
1991), sample entropy (Lake et al. 2002), and multi-scale 
entropy (Costa et al. 2002).

HRV signals extracted from high quality data col-
lected in laboratory settings has proven useful for detect-
ing a variety of information including sleep state or qual-
ity (Long et al. 2012), mental stress (Sun et al. 2012), and 
heart and cardiovascular disease (Ramirez-Villegas et  al. 
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2011) including hypertension (Poddar et al. 2014; Melillo 
et al. 2015). However, when applying such analyses to field 
data, both linear and nonlinear analyses are not sufficient to 
describe HRV, due to the additional noise associated with 
field data (Manis et  al. 2005; Nikolic-Popovic and Gou-
bran 2013). Even the use of entropy-based methods cannot 
address this problem due to noise caused by motion arti-
facts and sensing errors.

One study made use of home monitoring HRV data 
(Lewicke et  al. 2008) for classifying sleep and awake 
states of infants. Linear and nonlinear analyses were used 
to measure HRV, and additionally incorporated sample 
rejection through reliability in the classification model in 
order to improve classification performance. Although they 
rejected unreliable samples (30% of the data) for model 
training, they achieved only 85–87% correct classification. 
This result shows that rejection of unreliable data is not 
sufficient for detecting hypertension and that a richer HRV 
representation is needed to achieve high accuracy.

2.3 � Summary

To summarize, past work has established a set of highly 
effective features for detecting a variety of conditions from 
HRV signals. However, most of this work has depended on 
high-quality clinically collected ECG data. A field-ready 
solution requires both a sensing solution that is relatively 
high quality (and easy to use) and an approach to analysis 
that is robust to noisy data.

3 � A waist belt for HRV monitoring in the field

We developed a wearable heart-rate monitoring system 
based on a waist belt, as seen in Fig. 1. The belt is com-
prised of three kinds of sensors: three dry electrodes, a 
3-axis accelerometer and two pressure sensors with dif-
ferent sensitivities. Data is collected from the sensors and 
transmitted by a control unit over bluetooth to a nearby 
computer.

Most similar approaches are designed to be worn around 
the chest. While the waist is non-standard, we believe it 
will (1) be easier to adjust, requiring no special expertise 
because the exact positioning is flexible, and (2) minimize 
motion artifacts (i.e., noise) due to breathing motions.

HRV data is sampled from the electrodes at 200  Hz. 
Artifacts caused by body motion during sleep are detected 
by the accelerometer. Breathing and coughing are detected 
with the pressure sensors. The HRV signal is amplified and 
filtered through a 40 Hz notch filter, a 0.5 Hz high-pass fil-
ter frequency, and a 30 Hz low-pass filter frequency. These 
filters were chosen empirically, using input from the sen-
sors to remove various artifacts, including motion noise, 
power frequencies, baseline drift, and loss of electrode 
contact. To obtain a smooth HRV signal, a second-order 
(0.5–20  Hz) bandpass filter was applied, before data was 
transmitted to a nearby computer.

3.1 � Data collection

To validate the usefulness of our waist belt monitor-
ing system, we collected ECG data from 28 hypertensive 
patients (ages ranging from 52 to 71 years, 10 female, 18 
male) and 24 non-hypertensive controls (ages ranging from 
55 to 73 years, 8 female, 16 male). All the subjects were 
recruited by the Aero Medical Institute in Beijing, China. 
The hypertensive patients were from an affiliated hospital 
of the Institute, and the control subjects were elderly volun-
teers from the Institute and several universities in Beijing, 
China.

The control subjects underwent a medical examination 
to confirm that they had no cardiac disorders or negative 
cardiac histories. Subjects were given the waist belt device 
and instructed on how to use it. They were told to turn it 
on and wear it overnight in their homes, while they were 
sleeping. All the subjects put the waist belt on by them-
selves in their home.

3.2 � Data preparation

Across our participants, we collected heart rate data for 
7–9  h. An author of this study who is a medical expert 
manually inspected the collected dataset to identify 
anomalous data (i.e., excessive motion noise, very short 
sleep times), and excluded those participants from the 
study. A total of 4 participants (1 female, and 3 male) 
were excluded from among the hypertensive patients. 
When we collected the data from them, all of them said 
they didn’t sleep very well during the night, and the 
female patient have worn the waist-belt for 2 h, and then 
gave up. Moreover, two of the patients have some other 
diseases, and their data could be influenced by complex 
reasons, which is not suitable for further analysis based Fig. 1   Our waist-belt HRV monitoring system
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on the medical expert viewpoints. After removing these 
individuals, the patient population consisted of people 
ranging from 52 to 71 years, 9 female, 15 male. None of 
the control subjects were excluded.

4 � Hypertension recognition approach

Classification of a patient as hypertensive or not based on 
field data is an open problem. However, as stated in the 
“Background” section, past work has identified the key 
types of time-domain, frequency-domain and entropy fea-
tures for HRV that can be used in laboratory settings for 
effective classification.

We contribute a novel approach to long-term temporal 
data analysis, which we call pooled temporal pyramids. 
A pyramid representation is a multi-scale signal repre-
sentation used in the computer vision, image processing 
(Burt and Adelson 1983; Adelson et al. 2003), and signal 
processing (Mallat 1989; Coifman et  al. 1993) communi-
ties. It is a predecessor to scale-space representation and 
multi-resolution analysis. The Discrete Wavelet Transform 
(Mallat 1989), an example of a pyramid representation, is 
a powerful method for analyzing time-series signals at mul-
tiple resolutions for different frequencies. It is calculated by 
successively passing a signal through high-pass and low-
pass filters, producing approximate and detailed wavelet 
coefficients. This approach has been applied to signal com-
pression, noise reduction, and signal representation (Adeli 
et al. 2003; Subasi et al. 2005).

Inspired by the success of pyramid representation in 
prior work, we take a similar approach for representing 
HRV from ECG signals. Our method does not apply fre-
quency filtering for the decomposition of the input signal 
like in a wavelet transform, but instead we decompose the 
signal into sub-signals using multi-scale temporal resolu-
tions. By building a pyramid at several levels of temporal 
resolution for HRV representations, we can more effec-
tively recognize whether the input signal is from a subject 
with hypertension or not. Building such a pyramid at differ-
ent levels with multi-scale time resolutions lets us consider 
different information while also being more robust to noise, 
as variances are reduced.

To avoid feature explosion, we combine this approach 
with feature pooling methods. The pooling approach has 
been used to aggregate feature statistics in the spatial 
domain (Boureau et al. 2010; Lowe 2004) and in the tem-
poral domain (Lemieux et  al. 2011). It combines the fea-
tures over a local neighborhood using a statistical method 
in order to create a joint feature representation. It is invari-
ant to small transformations, is robust to noise, and has a 
compact representation.

4.1 � Data preprocessing

Given a digitized ECG signal, we first perform noise fil-
tering using Savitzky-Golay filtering (Savitzky and Golay 
1964). This is a method of data smoothing based on local 
least-squares polynomial approximation. Based on the pre-
vious work (Awal et  al. 2011) and empirical results, we 
set the parameters of the filtering to use a polynomial of 
degree 7 and frame size of 21.

Next, we detect R peaks by applying a threshold algo-
rithm on 1-min segments extracted from the entire signal. 
We first split the entire signal into multiple short-term sig-
nals with a specific time duration, and then detect peaks by 
finding the local maximum and thresholding peaks for each 
short-term signal. Rather than applying this to the whole 
long-term signal, this approach allows us to reduce errone-
ous peak detection caused from sensing or motion noise, 
by setting an appropriate threshold constrained to the short-
term signal. We use 1-min duration and 0.5 mV as a thresh-
old, determined empirically. In order to remove additional 
erroneous peaks, peaks that are very close to each other 
are ignored. The acceptable number of samples for sepa-
rations between two neighboring R peaks was established 
as 120 by considering the lower bound of a resting heart 
rate for adults (60 BPM) and our belt’s sampling frequency 
(200 Hz).

The R-R interval is extracted by calculating the time 
difference between adjacent R peaks. First, we again filter 
out erroneous R-R interval values as those errors can affect 
HRV analysis and the final recognition task. For filtering, 
we perform a thresholding by considering the distribution 
of R-R interval values as following in Eq. (1):

where R̃R is the filtered sequence of R-R intervals, 
RR

mean
and RR

std
indicate the mean and standard deviation 

values of R-R intervals, while α controls which R-R inter-
val values can be included in the filtered R-R intervals. Too 
large of an α value may include erroneous R-R intervals, 
while too small of an α value may miss valid R-R inter-
vals. In our dataset, the average amount of data filtered out 
are 18.395, 3.611, 1.196, and 0.646% for α = 1, 2, 3 and 4, 
respectively. We select α to be 3, based on the normal range 
of heart rate R-R intervals.

4.2 � Feature extraction

Given a set of filtered R-R intervals, we extract lin-
ear (time-domain and frequency-domain) and nonlinear 
(entropy-based) features that have been commonly used for 
describing HRV [Al-Tabbaa and Oweis 2014].

Time-domain features

(1)RR
mean

− �RR
std

⩽ R̃R ⩽ RR
mean

+ �RR
std
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•	 RRMEAN, RRMEDIAN, RRMIN, RRMAX: Mean, Median, 
Minimum, Maximum of R-R intervals.

•	 RRSDANN: Standard deviation of the averages of R-R 
intervals in all 5-min segments of the entire signal.

•	 RRSDNN index: Mean of the standard deviations of all 
R-R intervals for all 5-min segments of the entire sig-
nal.

•	 RRRMSSD: Root mean square of differences between 
successive R-R intervals.

•	 RRpNN50: Percentage of differences between succes-
sive R-R intervals over entire signal that are greater 
than 50 ms.

Frequency-domain features

•	 PVLF: Power in very low frequency ranging from 0 to 
0.04 Hz, which reflects vascular mechanisms caused 
by negative emotions.

•	 PLF: Power in low frequency ranging from 0.04 to 
0.15  Hz, which reflects sympathetic modulation of 
heart rate.

•	 PHF: Power in high frequency ranging from 0.15 to 
0.4 Hz, which reflects parasympathetic activity.

•	 PTotal: Power in total frequency ranging from 0 to 
0.4 Hz.

•	 PLF/HF: Ratio of power in the LF and HF, which cor-
responds to sympatho-vagal balance.

Entropy features

•	 EApproximate: This is used to quantify the regularity and 
unpredictability of fluctuation by observing repetitive 
patterns of fluctuation in the heart rate time series 
(Pincus et al. 1991). A signal containing many repeti-
tive patterns has a relatively small value, while more 
complex and less predictable data has a higher value. 
For parameter values, 2 and 0.2 of standard deviation 
of input were used for embedded dimension (m) and 
tolerance level (r), respectively.

•	 ESample: This is a modification of EApproximate that is 
independent of data length and relatively consist-
ent over a broad range of possible parameter values 
[Lake et al. 2002]. The same parameters were used as 
EApproximate.

•	 E2Multi-scale, E3Multi-scale, E4Multi-scale, E5Multi-scale, 
E6Multi-scale: This set of five features is an extension 
of Sample entropy that uses a multi-scale analysis 
(Costa et  al. 2002). This computes Sample entropy 
over a range of scales and can investigate complex-
ity in signals that have correlations at multiple scales. 
We use five types of scales ranging from 2 to 6.

4.3 � Temporal pyramid representation for describing 
HRV

Most previous recognition tasks based on an HRV analysis 
have used a combination of linear and nonlinear features, 
as described in the related work. Although this has worked 
well when applied to clean short-term data obtained from 
controlled clinical settings as is common in the previ-
ous work, noisy data such as that collected in the field can 
cause performance to decrease (Nikolic-Popovic and Gou-
bran 2014; Manis et al. 2005). To address this, we present 
a temporal pyramid representation for boosting hyperten-
sion classification performance, which is a more powerful 
method than using traditional linear and nonlinear features.

The pyramid is built by subdividing the entire signal at 
L different levels of temporal resolution (Fig. 2). The num-
ber of levels may vary depending on the signal parameter 
(e.g., sampling frequency) or goal of the recognition task. 
Level 0 starts with the entire signal, and higher levels are 
built from smaller temporal resolutions, such that level l 
has 2l temporal segments. All d features are calculated for 
each segment at level l. Therefore, level 0 produces the sin-
gle combined feature vector that consists of time-domain, 
frequency-domain, and entropy features for each input sig-
nal. Level 0 represents the typical non-pyramidal approach. 
Level 1 produces two combined feature vectors because its 
number of sub-signals is two using a 4-h temporal resolu-
tion, and level 2 produces four combined feature vectors 
from 4 sub-signals with a 2-h temporal resolution. These 
are recursively combined with feature vectors from the pre-
vious level. Thus there are d*2l + d*2(l−1) + d*2(l−2) + … + 
d*20 features total at level l, where d indicates the dimen-
sionality of the three types of features (temporal, frequency, 
and entropy).

Level0
(8 Hours)

TD, FD, EN

TD, FD, EN TD, FD, EN

TD, FD, EN TD, FD, EN TD, FD, EN TD, FD, EN

Level1
(4 Hours)

Level2
(2 Hours)

Fig. 2   Example of constructing a pyramid at three-levels of tempo-
ral resolution. At each level, Time domain, Frequency domain, and 
Entropy features are calculated. Time periods at each level are twice 
as many (half as long) as the previous level
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4.4 � Feature pooling

Once a pyramid is obtained by the method described in 
the previous section, we take a pooling approach (Boureau 
et al. 2010) for aggregating multiple feature vectors within 
levels into a single feature vector to describe HRV at each 
pyramid level. This allows the dimensionality of the pyr-
amid representation to be reduced to d*L, where L is the 
number of levels. To limit the number of features, we also 
pool across levels, with a resulting final dimensionality of 
d.

We used four types of pooling methods within levels: 
average, maximum, minimum, and magnitude (the root of 
the sum of squares of each feature). Average and magni-
tude combine information from all sub-regions in a level. 
Maximum picks one value from the sub-regions. For each 
feature, we averaged its value across levels.

4.5 � Classification

The pooled features derived from the temporal pyramid 
representation are normalized and then used as an input 
to a classifier. Since our dataset is small (48 subjects), the 
classifier should be carefully determined because noise/out-
liers can have greater impact and there is a higher risk for 
over-fitting than if using a large dataset. This means that 
complex nonlinear models are not a good choice because a 
small dataset cannot fit models with many degrees of free-
dom. Therefore, we used linear classifiers in order to avoid 
those problems. We use two linear classifiers to recognize 
hypertensive and non-hypertensive subjects: L1-regular-
ized logistic regression and linear support vector machine 
(SVM).

Logistic regression is a simple and efficient classification 
method; however over-fitting may occur with a small data-
set. In order to overcome this problem, L1 regularization 
was enforced by an L1 norm constraint on the parameter 
vector. The SVM is popular for recognition tasks because 
it usually achieves good performance. We use a linear SVM 
with parameter C = 1.

5 � Experimental analysis

We divided our data into two groups. Data from 18 par-
ticipants (the optimization set, containing 9 hypertension 
patients and 9 control subjects) was used to select a variety 
of parameters and the remaining data (the test set, contain-
ing 15 hypertension patients and 15 control subjects) was 
used as a validation dataset to assess the performance of 
our method based on the selected optimal parameters.

Using our optimization set, we explored: (1) valid-
ity of data whether there was a difference between the 

hypertensive and healthy participants, (2) feature selection 
which features were most predictive of hypertension, (3) 
impact of the use of overnight data showing why long-term 
data should be used, (4) pyramid depth how many levels to 
use in the pooled temporal pyramid, (5) pooling operator 
what pooling operator was best to pool temporal pyramid 
for HRV.

5.1 � Metrics

For each dataset, a leave-one-subject-out cross validation 
procedure is conducted. We use three evaluation metrics: 
Sensitivity (also known as recall), specificity, and accuracy, 
defined as

where TP, TN, FP and FN indicate true positive, true 
negative, false positive, and false negative, respectively. 
Sensitivity (or recall) measures how good the classifier 
is at detecting the true positives, that is the proportion of 
hypertension patients from the correctly recognized results. 
Specificity measures how good the classifier is at avoiding 
false positives, that is the proportion of control subjects 
from the correctly recognized results.

Based on criteria such as disease type, its severity, or 
prevalence, an appropriate model and its parameter can be 
determined. A high sensitivity value indicates that fewer 
cases of hypertension are missed, while a high specificity 
value indicates that fewer cases of control subjects receive 
an unnecessary diagnosis of hypertension. The ideal case 
is to have both high sensitivity and high specificity values; 
however there is typically a trade-off. This is a common 
tradeoff in for medical diagnosis and it should be addressed 
by considering some other physiological parameters and 
symptoms.

5.2 � Validity of dataset

According to (Virtanen et al. 2003), hypertensive patients 
have decreased HRV values when compared with non-
hypertensive subjects. We can validate that our dataset has 
been correctly collected from the waist-belt body-worn sen-
sor, by checking that the hypertensive patients have lower 
feature values for HRV than the control subjects.

Table 1 shows the comparison of features that are calcu-
lated from signals for the hypertension patients and control 
subjects. Overall, all of the features for the hypertension 

(2)Sensitivity(%) =
TP

TP + FN
× 100

(3)Specificity(%) =
TN

TN + FP
× 100

(4)Accuracy(%) =
TP + TN

TP + FN + TN + FP
× 100
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patients have lower mean values than those of the control 
subjects except for RRMEAN, RRMEDIAN, RRMIN and PLF/HF. 
Most researchers consider the RR statistics to be less mean-
ingful time-domain features for classifying hypertension 
and do not use them (e.g., Poddar et al. 2014). For the LF/
HF ratio, previous work (Singh et al. 1998) has shown that 
this value varies for those with hypertension. Therefore, we 
use these results to demonstrate the validity of our waist 
belt collected dataset.

5.3 � Feature selection

From the entire feature set (20 features) including time-
domain, frequency-domain, and entropy features, We 
selected a subset in order to reduce the risk of over-fitting, 
and used a linear SVM weight for feature ranking for the 
reason that SVM yielded the most rapid convergence to the 
best performance on the given dataset. We used information 
gain as a feature selection metric and 7 top ranked features 
were selected because 7th (E3Multi-scale) and 8th (RRMAX) 
features have large gap on the average rank (6.3 ± 2.33 and 
8.6 ± 2.06).

Table  2 shows the selected top-7 features in the order 
of the information gain score. The information gains were 
calculated for training set in each validation under a leave-
one-subject-out cross validation for optimization set. The 
average and standard deviation on information gain were 
calculated. Overall, ESample was ranked as the most relevant 
feature for our task, and the remaining multi-scale entropy 

features and entropy features were highly ranked as well. 
The frequency-domain feature PVLF was also determined as 
an important feature.

5.4 � Impact of the use of overnight data

Unlike the short resting ECG test in clinical settings, we 
have used overnight ECG data that is collected while sleep-
ing for recognizing hypertension. Although the short rest-
ing data collected in clinical settings could be enough for 
a diagnosis, our data collected from a wearable device in 
real-world settings could include erroneous data in due to 
motion noise or sensing errors. Therefore, analyzing short-
term data collected from a wearable device does not pro-
vide acceptable and stable performance because perfor-
mance depends on the data quality. In order to overcome 

Table 1   Comparison of HRV 
features for hypertensive 
patients and control subjects

Type Feature Control (mean ± SD) Hypertensive (mean ± SD)

Time-domain RRMEAN 0.8977 ± 0.1034 0.9010 ± 0.1301
RRMEDIAN 0.8860 ± 0.1311 0.9102 ± 0.1405
RRMIN 0.6800 ± 0.1296 0.7206 ± 0.1152
RRMAX 1.1704 ± 0.1596 1.0767 ± 0.1804
RRSDANN 0.0619 ± 0.0248 0.0572 ± 0.0336
RRSDNN index 0.1034 ± 0.0594 0.0539 ± 0.0401
RRRMSSD 0.1351 ± 0.0854 0.0698 ± 0.0628
RRpNN50 0.9496 ± 0.0331 0.8689 ± 0.0845

Frequency-domain PVLF (ms2) 5.7261 ± 4.0433 3.6910 ± 3.6003
PLF (ms2) 3.3063 ± 3.2327 1.1621 ± 1.7799
PHF (ms2) 6.0722 ± 6.3137 1.9928 ± 3.7635
PTotal (ms2) 15.1046 ± 12.9242 6.8459 ± 8.1397
PLF/HF 0.6995 ± 0.3277 0.9367 ± 0.6504

Entropy EApproximate 1.7599 ± 0.2015 1.2948 ± 0.3590
ESample 1.4784 ± 0.2685 0.9879 ± 0.3747
E2Multi-scale 1.6924 ± 0.3042 1.3291 ± 0.4648
E3Multi-scale 1.6045 ± 0.2368 1.1535 ± 0.2946
E4Multi-scale 1.4956 ± 0.2360 1.1293 ± 0.2669
E5Multi-scale 1.4604 ± 0.2216 1.1300 ± 0.2521
E6Multi-scale 1.4683 ± 0.2109 1.2036 ± 0.2678

Table 2   The selected feature set

Average rank Feature Score average ± STD

1.1 ± 0.24 ESample 0.467 ± 0.054
2.2 ± 0.53 EApproximate 0.460 ± 0.046
4.1 ± 1.54 E5Multi-scale 0.105 ± 0.183
5.3 ± 0.75 E6Multi-scale 0 ± 0
5.7 ± 2.59 PVLF 0 ± 0
6 ± 1.22 E4Multi-scale 0.028 ± 0.109
6.3 ± 2.33 E3Multi-scale 0.134 ± 0.199
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the problem of short-term data analysis, we have used long-
term data for the recognition task.

In this section, we show the impact of the use of long-
term data (as compared to the short in-clinic blood pres-
sure measurement) by providing comparisons for different 
durations of data. We created data segments by splitting 
the overnight data into 1/2, 1/4, 1/8, 1/16 and 1/32 size of 
the entire data in order to show the performance of short-
term data analysis. Figure 3 shows the average accuracy for 
different durations of data using two classifiers. The aver-
age sizes of each data segment for different splitting sizes 
were 4.28 h (1/2), 2.14 h (1/4), 1.07 h (1/8), 32 min (1/16) 
and 16  min (1/32), respectively. We can see that shorter 
amounts of data tend to produce lower performance for 
both classifiers.

To show the impact of our temporal pyramid represen-
tation, we provide comparisons for different numbers of 
levels as well as a comparison between a typical feature 
vector (L = 1, level 0) and our temporal pyramid representa-
tion feature (L > 1) in Fig. 4. We used a maximum L of 6 
(with the 6th level having a maximum of 32 segments of 

size 16 min on average). A greater number of levels would 
produce segments that are too small to appropriately exam-
ine HRV. An L of 1 calculates features over the entire data 
set for each participant. As described earliear, we use four 
different pooling operators (Max, Min, Average, and Mag-
nitude) to generate a feature value for each feature at each 
level.

Figure  4 shows that the magnitude pooling operator 
tends to perform better than the average and max pooling 
operators. Average and max pooling methods are known 
to perform well for visual recognition tasks (Boureau et al. 
2010). However, max ignores most elements obtained from 
the multi-scale analysis, and it can lead to non-represent-
ative feature aggregation, while average considers all ele-
ments evenly, which can diminish or remove characteristics 
of multi-level elements. The magnitude pooling method 
takes the scale of each element into account, which is well-
suited to our task.

We can also see from Fig. 4 that the temporal pyramid 
approach usually performs better than a standard single 
level algorithm only if an appropriate pooling operator 
is used. Past studies [Melillo et  al. 2015, Poddar et  al. 
2014] correspond to an L of 1 (a temporal resolution is 
the entire signal). As we can see in Figs.  4, 2 ~5 levels 
usually performs better than 1 level. However, using too 
many levels does not provide an improvement due to the 
instability of signal in the short-term time segments. Two 
classifiers, Logistic Regression and linear SVM, produce 
the similar performance on the most of the levels. The 
average accuracies seem to converge from level 2 for both 
classifiers. The proposed pyramid feature representation 
produces 83.33% average accuracy on level 2, while using 
a typical feature vector (# of level = 1) produces 72.22% 
average accuracy. For each level, the sensitivity and spec-
ificity were 66.67%/77.78% (level 1) and 77.78%/88.89% 
(level 2, 3 and 4). When using a typical feature vector, 
three hypertensive patients were recognized incorrectly 
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as control subjects, while two control subjects were rec-
ognized incorrectly as having hypertension. The pro-
posed pyramid feature representation outperformed the 
typical feature vector approach, especially for detecting 
hypertensive patients. When using the proposed repre-
sentation (level 2), two hypertensive patients were rec-
ognized incorrectly as control subjects, while one control 
subjects were recognized incorrectly as having hyperten-
sion. We conducted a Wilcoxon signed-rank test to check 
if there is performance difference between typical feature 
and proposed pyramid feature representation. The value 
of h was 0 which indicates that the test does not reject the 
null hypothesis and there is certainly the mean difference 
between two performances.

5.5 � Impact of different data length with pyramid 
representation

To show how much our pyramid representation improves 
the performance for various durations of data, we provide 
comparisons for different lengths of data with different 
numbers of levels in the pyramid representation in Fig. 5. 
We used 4 types of data lengths from the full overnight 
signal to 1/8 size of the overnight signal as an input sig-
nal. Also, we applied different numbers of levels in the 
pyramid to determine whether using our pyramid repre-
sentation on the shorter signal results in better perfor-
mance than using the typical feature representation on the 
longer signal. Similar to Figs. 3, 5 first shows that using a 
longer signal usually gives better performance than using 
a shorter signal. Second, a shorter signal with pyramid 
representation outperforms the longer signal with typical 
feature representation, e.g., 72.22% (overnight 1-level) 
vs. 75.00% (1/2-night 2-level). Our pyramid representa-
tion provides a chance to use a shorter signal that gives 
similar or higher performance than using a longer signal.

5.6 � Result in the validation set

Based on the results from the previous sections, we 
selected several parameters to evaluate the performance 
on the validation dataset. First, 7 features obtained by our 
feature selection were used. Second, the magnitude pooling 
method was selected for building our feature representation 
because it performed the best for all classifiers. Third, the 
linear SVM classifier was selected because it yielded the 
most rapid convergence to the best performance between 
the two classifiers. Lastly, the number of levels selected 
to build the pyramid feature representation was 2 because 
accuracy converged starting from the 2-level feature repre-
sentation amongst the three classifiers, as shown in Fig. 4. 
This configuration was tested using leave-one-out cross 
validation on the 32 participants who were not in the opti-
mization set.

Our feature representation obtained 93.33% average 
accuracy with 93.33% sensitivity and 93.33% specific-
ity, while using a typical feature vector (L = 1) produces 
86.67% average accuracy with 80.00% sensitivity and 
93.33% specificity. When using a typical feature vector, 
three hypertension patients were recognized incorrectly 
as control subjects, while one control subject was recog-
nized incorrectly as having hypertension. Our approach had 
good performance for our recognition task when compared 
to typical feature-based recognition. Note that the feature 
dimensions are the same between our feature representation 
and the typical feature vector. By aggregating HRV features 
at multiple scales, our pyramid feature representation out-
performed the typical feature vector.

6 � Discussion

The main contribution of the paper is to provide a non-
intrusive approach for determining whether a patient 
has hypertension based on overnight continuous HRV 
monitoring.

Our proposed waist belt based heart-rate monitoring 
system proved to be a promising alternative for detecting 
hypertension in common home settings. Overnight sleep 
monitoring provides a non-invasive and valuable opportu-
nity to sense and assess HRV continuously. Daytime moni-
toring in the field is likely to be highly error-prone due to 
external and internal noise (such as activities and emo-
tions). In contrast, sleep is an ideal ‘window’ in which to 
investigate inherent HRV in the body, when people will 
be in a resting calm state that generates minimal noise 
artifacts.

In addition, the waist belt has several advantages over 
the existing typical field methods for ECG monitoring: 
(1) Compared to a chest-worn band, the waist-worn belt 
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is not as affected by breathing motions, (2) The waist-
worn belt is less likely to move around during sleep than 
appendages such as the arm (which would affect wrist-
worn sensors), (3) The waist-worn belt is less intrusive 
and suitable for relatively long-term monitoring and (4) 
Unlike clinic-quality ECG monitors, it is easily set up 
and used by end users. Such a system could be applied 
for daily health care or assistive screening for clinic 
diagnosis.

Our results verify that it is possible to detect hyperten-
sion with a high degree of accuracy based on overnight 
data collected with our monitor. Past work has identified 
three kinds of features of HRV that are predictive: time-
domain, frequency domain and entropy features. However, 
making highly accurate predictions is difficult.

We present a new method for analyzing long-term time 
series data, the multi-scale temporal pyramid representa-
tion. Using this method, we were able to raise our accu-
racy from 86.67 to 93.33%. These enhanced results were 
obtained using the same features but collecting them over 
a multi-scale time window. Our intuition is that this radical 
improvement is caused by the fact that hypertension is not 
continually present in the data. Thus, summing over multi-
ple time intervals allows us to capture hypertensive HRV 
signals that are short in duration or occur only occasion-
ally. These HRV signals are indicative of hypertension, 
even when hypertensive events occur only 8 or 10 times 
over the course of a night. In contrast, a flat, non-pyrami-
dal approach will not capture those events because they are 
essentially drowned in much more prevalent non-hyperten-
sive data.

A limitation of this work is the small number of partici-
pants (48 total). Since collecting long physiological data 
from people in the field (especially patients with disease) 
is challenging, we were able to apply our method in the 
small number of participants. If we can use large number of 
participants so that we can apply more complex nonlinear 
classifier, we expect that our approach is able to improve 
performance. We were careful to optimize our approach set 
on a small separate subset of participants, which helps to 
increase confidence in our results. Nonetheless our algo-
rithm is unlikely to operate at 93.33% accuracy on other 
datasets from the field, and further testing on a larger data 
set is warranted. In addition, HRV can be affected by vari-
ous factors, including drinking alcohol, smoking, exercis-
ing and stress. Training against examples of people without 
hypertension who exhibit behaviors that affect HRV would 
help to improve the robustness of our results.

As for the subjects’ feedback, participants with 
hypertension from our data collection group were gen-
erally positive about the belt, its ease of use, and their 
ability to know whether hypertension was developing. 

Furthermore, they requested a timely reminding of their 
health status. Control participants were intrigued but 
less likely to wear the belt, as they did not perceive any 
benefit.

As for our future work, there are two aspects we would 
like to investigate: on one hand, our machine learn-
ing results should be revisited by a medical expert who 
could help to interpret features and results, and define or 
identify some clinical diagnostic rules to guide a more 
nuanced interpretation of the data. For example, how 
should longer or more frequent periods of abnormal 
(hypertensive) HRV be interpreted? Can we come up 
with a measure of hypertension severity? We would also 
like to apply this work to predicting HRV for patients 
who are very early on in the disease, even pre-clinical. 
Finally, we would also like to investigate how hyperten-
sion plays out over longer time periods, such as over mul-
tiple nights or even months.

7 � Conclusion

Hypertension is a cause of chronic health problems glob-
ally. HRV can be used as an early indicator for hyperten-
sion. Early detection is important for better prognosis and 
preventing the progression of the disease.

In our work, we discriminate patients with hyperten-
sion from normal healthy subjects using a waist belt 
based non-intrusive heart rate monitoring system that 
was used in the field while sleeping overnight. Based 
on the long-term ECG data of 48 hypertensive and nor-
mal subjects, a multi-scale segmented HRV analysis was 
investigated. Our analysis showed that R-R intervals, 
as described by time, frequency, and entropy features, 
have decreased values in hypertensive patients over nor-
mal healthy subjects. Our multi-scale temporal pyramid 
approach was able to achieve very high accuracy for the 
task of classifying hypertension.

Hypertension is a complex chronic disease, caused by 
various risk factors, such as age, sex, weight, family his-
tory and lifestyle. Our approach may complement diag-
nostic methods in distinguishing hypertensive patients 
and normal subjects, and could potentially aid in early 
and automatic detection of hypertension risk. However, 
further studies with a larger number of participants are 
necessary to investigate the long-term diagnostic signifi-
cance of our approach.
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