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Figure 1: KnitPick converts KnitSpeak into KnitGraphs which can be carved, patched, and output to knitted results. 

ABSTRACT 
Knitting creates complex, soft fabrics with unique texture prop-
erties that can be used to create interactive objects.However, 
little work addresses the challenges of designing and using 
knitted textures computationally. We present KnitPick: a 
pipeline for interpreting hand-knitting texture patterns into 
KnitGraphs which can be output to machine and hand-knitting 
instructions. Using KnitPick, we contribute a measured and 
photographed data set of 300 knitted textures. Based on fnd-
ings from this data set, we contribute two algorithms for ma-
nipulating KnitGraphs. KnitCarving shapes a graph while 
respecting a texture, and KnitPatching combines graphs with 
disparate textures while maintaining a consistent shape. Knit-
Pick is the frst system to bridge the gap between hand- and 
machine-knitting when creating complex knitted textures. 

Author Keywords 
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INTRODUCTION 
Digital fabrication of textiles is crucial to the production of 
interactive physical objects [10, 4, 3]. Knitted fabric, in partic-
ular, can create complex, seamless shapes with diverse struc-
tural properties (e.g., stiffness, curl, stretch, opacity). Hand-
knitters have also developed, documented, and curated a mas-
sive amount of practical knowledge on knitted textures [29, 26, 
19, 16]. Industrially, automatic knitting machines are robust 
digital fabrication devices; however, machine knitting design 
interfaces require training to use and cannot directly leverage 
the widely available knowledge of hand-knitters. 

Ultimately, the basis of a computer aided knitting design 
pipeline would enable the combination and manipulation of 
knitted textures to create complex textured fabric objects. We 
present KnitPick, a design pipeline that weaves together the 
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Figure 2: Three interactive knitted-texture pillows that support rolling (left), tugging (middle) and sliding (right) interactions. 

knitting texture expertise of hand-knitters and the speed and 
reliability of machine knitting. KnitPick is a programming 
pipeline for interpreting and modifying hand-knitting patterns 
to create textured knitted objects that can be machine- or hand-
knitted. There are three main contributions: a compiler for 
parsing and processing a large range of hand-knitting patterns 
into KnitGraphs; a large, measured data set of knit textures; 
and algorithms that can be used to modify (KnitCarve) and 
combine (KnitPatch) textures to create knit objects (Figure 1). 

The KnitSpeak compiler interprets a pseudo-natural language 
often used in hand-knitting patterns – KnitSpeak – into a Knit-
Graph data structure. The KnitSpeak compiler is not the frst to 
handle this task [6, 7], however it is the frst language demon-
strated over a large number of patterns and to support both 
machine knitting and hand knitting output. The KnitGraph 
data structure builds on the structure presented by Narayanan 
et al. [23], which automatically generates machine knitting 
instructions to ft arbitrary 3D meshes. Our KnitGraph is 
generated by the KnitSpeak compiler, which can verify four 
properties related to hand- and machine-knittablity. 

Using the compiler, we contribute a large, diverse, measured 
data set of knitted textures and their properties. We compiled 
and machine-knitted 300 hand-knitting patterns. We pho-
tographed and measured the gauge (loops per inch of width 
and height) of each texture, with and without a loading force. 
Using the photographs, we measured the opacity of each tex-
ture. This data then serves as the basis for heuristics used in 
our core algorithms: KnitCarving and KnitPatching. 

The relationship between shape and texture is tangled and 
fraught; it raises two challenges. First, textures are repeated 
patterns with the connections across repetition borders that are 
critical to the structure of the whole knitted object. That is, 
simply cutting a repeat to ft a desired size will likely cause 
the entire knitted object to unravel. The KnitPick pipeline 
addresses this with a dynamic programming approach to scal-
ing textures, KnitCarving, based on a classic image-scaling 
algorithm, Seam Carving [5]. Second, combining many knit-
ted textures into a single object often causes the properties 
of these textures to clash, stretching and distorting the shape 
of the object. The KnitPick pipeline addresses this with a 
heuristic-based optimization algorithm, KnitPatching, which 
joins knitted textures such that their boundaries remain fat. 

Scenario 
Imagine a designer creating a set of interactive machine-
knitted pillows. She fnds a tutorial on interacting with pho-
tocells and decides to control the pillows by laying opaque 
knitted fabric over the sensors. She browses our data set of 
knitted textures looking for variance in stretch and opacity, se-
lecting four unique textures: stockinette that rolls up on itself, 
welts that spring vertically, ribbing that springs horizontally, 
and lace windows to let light shine onto the sensors. To create 
this design, she will need to: (1) convert hand-knitting texture 
patterns into knitting machine instructions, (2) combine the 
textures so that the lace window lays fat on the pillow case, 
and (3) adjust the textures to ft stitch-counts that align on 
the fat-case. This design process is cumbersome, requiring a 
machine-knitting expert to carefully defne each stitch in the 
patterns. KnitPick provides a pipeline that automates each of 
these steps, laying the groundwork for computer aided knitting 
design that supports the creation of unique, interactive textured 
knitted objects. First she compiles her hand-knitted textures 
using the KnitSpeak compiler. Second, she lays out rectan-
gular patches of the textures as she designs each pillow and 
uses KnitPatching to join the textures together to create one 
whole KnitGraph. In order to do this, KnitPick must adjust the 
number of repetitions and the sizes of each texture with Knit-
Carving. The KnitGraph is output to machine instructions so 
that she can manufacture and assemble her interactive pillows 
(Figure 2). 

RELATED WORKS 
There are a wide range of tools for computer-aided knitting. 
Commercial tools often target either hand or machine knitters, 
not both. Knitting machines use proprietary low-level chart-
based design systems [27, 31, 28] that support customization 
of a few common patterns through a “wizard” interface. How-
ever, the user’s options are extremely limited, particularly with 
regards to texture. For hand-knitters, there are numerous on-
line pattern repositories [16, 26, 7], some of which guide users 
to make limited stitch-level changes. Ultimately, texture is 
reserved for knitting experts. 

Researchers have approached sizing as a challenge of manipu-
lating 3D meshes that are hand [22, 33] and machine [25, 23, 
24] knittable. The addition of texture, when supported [24], 
may change the shape in unpredictable ways. Simulation of 
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Figure 3: Loop-to-loop structures of the most common 
stitches: knits, purls, decreases, increases, and cables 

knitted fabric has shown promising results [21, 12, 8], includ-
ing supporting interactive design of small texture patches [17], 
but still requires case-specifc hand-tuning to provide results 
that resemble a given yarn. 

There are few tools that support interpreting, manipulating, 
and manufacturing machine knit objects. McCann et al. de-
scribes a base machine-knitting language [20] to support shap-
ing un-textured objects made of sheets and tubes, and provide 
a transfer planning algorithm for converting these primitive 
shapes into machine code. McCann et al. stops short of sup-
porting textures, neither expressing them or manipulating them. 
Narayanan et al. introduced knit graphs, representing stitches 
as nodes, with yarn and loop connections as edges [23]. This 
work did not support texture. Among six properties of ma-
chine knittable graphs, the properties of consistent orientation 
and limited node-degree are restrictive [23]. 

In later work, Narayanan et al. updated their system to use an 
annotated mesh structure in order to support arbitrary textures 
[24]. However their system includes only a limited number of 
pre-programmed textures and does not automatically account 
for how the shape changes because of the texture.Concurrently 
to KnitPick, Kaspar et al. approached texturing parameterized 
garments using a custom domain specifc language, recog-
nizing the same repeating, programmatic nature of knitted 
textures that KnitPick is based on [13]. 

BACKGROUND ON KNITTED STRUCTURES 
A knitted structure is composed of a series of loops of yarn 
pulled through other loops; each loop stabilizes the loop it was 
pulled through [20]. A loop through a loop is called a stitch. 
A course is series of stitches side-by-side; these may also be 
called rows in a fat sheet of knitting, or rounds in a tube. 

Texture derives from interconnected stitches. There are three 
composable properties of a stitch that change its effect on 
the texture: (1) the direction a loop is pulled through another 
loop, (2) how many loops it connects to, (3) how many other 
loops it crosses over. Hand knitters have developed a large set 
of named stitch-types that cover a variety of the most useful 
combinations. To demonstrate, we describe three groups: knits 
and purls, increases and decreases, twists and cables. 

Knit/Purl: Loops can be pulled through other loops in either 
of two directions: from the back of the fabric to the front or, 
conversely, from the front to the back. The most basic stitch 
is a knit—a loop pulled from the back of the fabric, through 

another loop, to the front (Figure 3). A purl is the opposite: 
a loop pulled front-to-back through another loop (Figure 3). 
A single stitch in isolation cannot meaningfully be labeled as 
one or the other: a purl is simply a knit viewed from the back. 

Decrease/Increase: More than one loop can be pulled through 
another loop (an increase), and a loop can be pulled through 
multiple other loops (a decrease). For textures, decreases 
and increases are locally paired (canceling each other out) 
to produce lace patterns. For example, a yarn-over (yo) 
leaves a small hole (i.e. an eyelet) in the fabric when paired 
with a decrease. Special types of increases and decreases are 
used create the frst loops in a knitted object, and to stabilize 
the last loops in the object. Cast-ons are increases that increase 
the number of loops on the frst course so that they can be 
pulled through subsequent courses. Bind-offs are decreases 
on the last course that decrease loops on the same course until 
only one loop is available which is knotted off by pulling the 
tail of the yarn through it. 

Twist/cable: Finally, a stitch can cross over neighboring 
stitches. Cables are formed by transposing adjacent sets of 
stitches in the same course. A cable with just two stitches 
involved may additionally be called a twist. Cables tend to 
stiffen the fabric by creating additional tension on the loops 
as they are stretched across other loops. Cables give the ap-
pearance of a column of stitches winding across the fabric, 
colloquially known as a "traveling stitch". 

KNITGRAPH REPRESENTATION 
We defne a KnitGraph as a directed graph where nodes rep-
resent loops1 with yarn-wise and loop-to-loop edges. A Knit-
Graph is: an ordered set of loops on a yarn, l ∈ Y ; a set 
of yarn-wise edges, e(u → v) ∈ EY between loops in the or-
der they are constructed; and a set of loop-to-loop edges, 
e(u ↑ v) ∈ EL representing how loops are pulled through other 
loops. Each loop-to-loop edge is labeled with an orientation: 
a loop pulled back-to-front or pulled front-to-back. By con-
vention, the frst yarn edge is directed from right-to-left when 
the cloth is viewed from the front. We explain our notation in 
Table 1 and diagrams in Figure 4. 

Notation Interpretation 

t(l) The time loop l was constructed 

u < v Loop u was constructed before v 

e(u → v) Loop u comes just before loop v on the yarn 

e(u ↑ v) Loop v is pulled through loop u 

d(u ↑ v) The edge from u to v has depth of d 

Table 1: Summary of KnitGraph notation. 

A knittable KnitGraph has the following four properties2 

These properties are stated for complete courses (i.e. no slip 

1[23] use stitches as nodes. This difference is primarily for conve-
nience with respect to our core algorithms. 
2Properties 2 and 4 are adopted from [23]. 
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Figure 4: Each loop (yellow circle) is constructed on a yarn (green arrows) which is pulled through (purple arrows) another loop. 
Loop-to-loop edges can cross over one another as long as the order they are crossed is defned (b). We limit the width of decreases, 

increases, and cables to prevent the yarn from tearing (c). 

stitches [2] or short rows [1]). Our system uses similar proper-
ties to ensure knittability of graphs with partial courses. 

Property 1: Loop-to-Loop Stability 

The primary constraint of a knitted object is that each loop 
must have at least one other loop pulled through it. Any 
KnitGraph that satisfes this property will not unravel. For 
every loop, p, there exists a loop, l, that is pulled through p. 

∀p ∈ Y ∃l ∈ Y : e(p ↑ l) ∈ EL (1) 

Property 2: Time Aligned Loops 

During knitting, yarn-wise edges establish the relative hori-
zontal position of neighboring loops and the time that they are 
constructed. If a child loop, c, is pulled through a parent loop, 
p, p must be constructed before c. 

∀e(p ↑ c) ∈ EL : p < c (2) 

Property 3: Explicit Edge Depths 

Decreases and cables lean to the left or right. In a cable, if the 
front-most parent loop is right of the other parent loops, it will 
make a left leaning cable. If the front-most parent is left of 
the other parents, it will create a right leaning cable. Similarly, 
loops stack on top of each other to create decreases. If the left 
most loop is stacked at the front, the increase and decrease 
will lean to the right. Conversely, stacking the rightmost loop 
at the front will create a left leaning decrease. 

Cables are created when loop-to-loop edges cross. There is a 
cable between any two loop-to-loop edges e(u ↑ y) and e(v ↑ x) 
if the child loops are constructed in the order y then x and 
either: (1) the parent loops are constructed in the order u then 
v in rows or (2) v then u in rounds (Figure 4b). 

⎪⎪⎪⎪
⎪⎪⎪⎪

⎧ 
e(u ↑ y) ∈ EL (3a) ⎪ e(v ↑ x) ∈ EL⎨ (3b) 

cable(u ↑ y,v ↑ x) ≡ y < x� 
(3c) 

⎪⎩ 
u < v in Rows 
v < u in Rounds 

(3d) 

Increases are created when there are more than one loop-to-
loop edges from a common parent loop, p, to many children 
in the set C ⊂ Y . Similarly, decreases are created when there 
are many loop-to-loop edges from a set of parent loops, P ⊂ Y , 
into child loop c. 

inc(p ↑ C) ≡ ∀c ∈ C, ∃e(p ↑ c) ∈ EL (4a) 
dec(P ↑ c) ≡ ∀p ∈ P,∃e(p ↑ c) ∈ EL (4b) 

In a cable or decrease, we need to know how edges cross 
(cable) and stack (decrease): we must know each edge’s depth. 
In a cable, if the loop-to-loop edge between u and y crosses the 
loop-to-loop edge between v and x, the depth of these edges 
cannot be equal. In a decrease, each loop-to-loop edge must 
have a unique stacking-order (i.e. each edge’s depth). 

cable(u ↑ y,v ↑ x) ⇐⇒ d(u ↑ y) , d(v ↑ x) (5) 

dec(P ↑ c) ⇐⇒ 

∃p0 0 (6)
∈ P : d(p ↑ c) ∧∀p ∈ P : d(p ↑ c) =⇒ p 0 = p 

Property 4: Limited Loop Distance 

If a loop is stretched to be pulled through another loop that is 
far away, the yarn is likely to tear; additionally, on a knitting 
machine, a needle may not be able to pull a new loop through 
very many loops stacked together. We allow loops to be pulled 
through loops up to 4 loops away (Figure 4c). For increases 
and decreases, the size of the set of child, C, or parent, P, 
loops must be less than or equal to 4. For a cable, both the 
distance between the parents (u,v) and the distance between 
the children (x,y) must be less than 4. 

inc(p ↑ C) ⇐⇒ |C| ≤ 4 (7a) 
dec(P ↑ c) ⇐⇒ |P| ≤ 4 (7b)� 

|t(v) − t(u)| ≤ 4
cable(u ↑ y,v ↑ x) ⇐⇒ (7c)|t(y) − t(x)| ≤ 4 

KNITSPEAK COMPILER 
Knitting patterns are complex and vary suffciently that they 
cannot easily be parsed; knitted textures, however, are often 
described with a consistent notation. Within curated sets of 



knitted textures [30, 7], this notation is strictly enforced. It 
follows a consistent pattern for describing stitch-level instruc-
tions across repeated courses of texture. Colloquially, this 
notation is called KnitSpeak. Similar to programming, KnitS-
peak loops through stitch instructions. Hand-knitters interpret 
these instructions like a computer interpreting machine-code. 

At a high level, KnitSpeak is set of instructions for creating tex-
tures made up of tiles of repeatable patterns with a fxed num-
ber of loops and courses (Fig.5a). Tiles may be surrounded by 
bordering patterns on the left and right edge. Within a course, 
a KnitSpeak pattern defnes a set of stitches that are repeated 
once, a set of stitches that are repeated in each width-wise tile, 
and another set of stitches that are repeated once. Each stitch 
is described with a keyword (e.g., k for knit, p for purl, yo for 
yarn-over), or a keyword with associated variables (i.e. k2tog 
for knit two stitches together). Each course generally reads 
like a do-while loop (e.g., k *k,p* to last st, k means 
“knit, then do knit and purl while there is one loop left on the 
last course, then knit”). Sets of courses are repeated to create 
vertical tiles. Courses are defned on each line of code and 
have a declared index (e.g., 1st row; every odd row). 

Compiling KnitSpeak 
Despite the programmatic structure, KnitSpeak is not directly 
transferable to machine instructions. We contribute the KnitS-
peak Compiler, which translates the KnitSpeak used by Stan-
feld and Griffths [30] and Stitch-Maps [7] into KnitGraphs. 
We compile KnitSpeak in three phases that ensure knittability. 

Phase 1: Parsing KnitSpeak 
We implement a parser using the Grammar-Kit parser genera-
tor [11] and JFlex lexer generator [15]. Grammar-Kit translates 
KnitSpeak into an abstract syntax tree based on a context-free 
grammar that covers both the Stanfeld and Griffth and Stitch-
Maps variants. We do not support knitting keywords that de-
scribe operations that are not strictly knitting (e.g., wrapping 
yarn around loops). The grammar denotes the loop construc-
tion order with the keywords row and round. We exclude 
rounds if the KnitGraph will be constructed on our machine. 

KnitSpeak is composed of stitch-tokens corresponding to 
canonical stitch structures (e.g., k,p,yo, k2tog, yo, t2l, 
c3b). Our compiler interprets each stitch-token as instructions 
for creating and connecting loops. It optionally rejects stitches 
wider than the allowable loop-distance on the machine (Prop-
erty 4). Tokens related to twists (e.g., t2l, t2r), cables (e.g., 
c3b, c3f), decrease (e.g., k2tog, skpo) imply the direction 
they lean, from which the crossing depth of stitches can be 
derived (Property 3). 

Phase 2: Semantic Analysis 
Semantic analysis determines the execution order of stitch-
token instructions, creating repeatable structures in a Knit-
Graph. This phase ensures the construction order of loops 
(Property 2) and connects all loops to a child (Property 1). 

Each course instruction is stored in a symbol table with indices 
indicating the order that they will be executed. As the symbol 
table is flled in, variables for the tile and border width are 

1st and 5th rows k. 
2nd and 4th rows p. 
3rd row k2, [yo, k2tog, k2] 

to last 3 sts, 
yo, k2tog, k1. 

6th row p3, [p2tog, yo, p2] 
to last 2 sts, 
p2. 

(a) KnitSpeak (b) Machine knitted sample 

Figure 5: Our system converts KnitSpeak (a) to KnitGraph 
that is machine knittable (b). 

updated based on the calculated loop counts from each instruc-
tion. If these values are not equal across courses, then one 
course could produce more loops than the following course 
consumes, resulting in a violation of the loop-to-loop con-
straint (Property 1). Mismatches in a loop count result in an 
error. Each course in the symbol table relies on the loops 
created on the course below it. As long as the loop counts 
match up between courses, the stitch-token instructions will 
be able consume the child loops of the last course and create 
new loops for the next course. The new loops are guaranteed 
to be created after the parents, satisfying Property 2. 

Phase 3: KnitGraph Instantiation 
Given a complete symbol table, we instantiate a KnitGraph 
with a specifed number of repeated tiles (width and height). 
First, the compiler creates a cast-on course with the user spec-
ifed loop count. Next, the compiler traverses all of the course 
instructions in the KnitSpeak pattern. At each instruction it 
creates the specifed stitches, consuming available loops left 
on the last course. First it creates the stitches in the starting 
border, next it consumes available loops to create the width-
wise tiles until the required number of loops for the ending 
border are left available. Once all of the course instructions 
have been actualized the system may repeat the process, to 
lengthen the graph by a specifed number of height-wise tiles. 

Generating Knitting Instructions 
We output instructions for both hand knitting and automatic 
machine knitting. Knitting machines use rows (“beds”) of 
hook-shaped needles; for more details, see [20, 4]. Unlike in 
hand knitting, in which the most recent course of loops is free 
to slide along the single long needle, each column of machine-
made stitches is held at the top loop by its own separate needle. 
Thus, each loop must be allocated a specifc needle at the time 
of its construction, and its parent must be located there at that 
time to receive it. Combining loops onto needles for decreases, 
creating spaces for increases on empty needles between loops, 
and using the front and back beds for knitting and purling, can 
all require re-arranging loops between courses of knitting. 

By convention, the frst course is allocated right-to-left, with 
each loop assigned a needle directly leftward of the one before 
it. For subsequent courses, two variables are maintained: a 
cursor, corresponding to the loop’s position in the course, and 
a slide variable. While iterating over the loops from left to 
right (which may be the opposite of the order they will be 
constructed, in the case of a right-to-left course), cursor is 
incremented and slide is updated per loop: if a loop has one 
parent, slide remains the same; if a loop has more than one 
parent, slide is decreased for each parent; if a loop has no 



Figure 6: Data set measurement setup, including camera, scale, 
and stretching rig. 

parents or its parents have other children, slide is increased. 
Note that for a swatch with only local increases and decreases 
(that is, no net loop count change), slide will be zero at the 
end of the course. 

Each loop is allocated to a needle at position = [cursor] + 
[slide]. The allocated needles are then used to determine the 
amount that each parent will be offset to support the new 
course of loops. These re-arrangements are accomplished via 
needle transfers determined by Lin et al. ’s “schoolbus+sliders” 
transfer solver [18]. 

To support hand knitters, we decompile KnitGraphs into Knit-
Speak. Information about repetition is lost in the KnitGraph. 
We iterate over all loops in the yarn and determine which key-
word corresponds to the set of edges entering connecting the 
loop. Each stitch is written out in the order it is found on the 
yarn. When we encounter a loop that is dependent on loops in 
the current course, a new course is created, starting with this 
loop. 

KNITPICK TEXTURE DATA SET 
Thousands of knitting patterns are available online. Even 
among textures such as those supported by our KnitSpeak 
compiler, the possibilities available number at least in the 
thousands. By using the KnitSpeak compiler on these patterns, 
we can better understand its capabilities and limitations. Thus, 
our next contribution focuses on creating a curated set of real-
world textures. Using the KnitSpeak compiler we created a 
data set of 166 samples from Stanfeld and Griffths [30] and 
306 samples from Stitch-Maps [7]. Given these compiled 
textures, as of publication we machine knit and measured 300 
textures. 

Sampling Strategy 
Stanfeld and Griffths curated 300 knitted textures. Of these, 
the KnitSpeak compiler interpreted 166 (55.3%) into Knit-
Graphs which we machine-knitted. All textures in the book 
section “Bobbles and Leaves” were excluded for using wide 

Figure 7: Sample swatches from data set against a black back-
ground. 

increases, decreases, and cables that violate Property 4. All 
other excluded patterns included annotations that described 
actions that are not machine-knittable or included multiple 
yarns. 

We collected 1454 of the most recent and popular KnitSpeak 
samples from the 5979 patterns on Stitch-Maps . We excluded 
393 (27.0%) samples that were written in the round and 755 
(51.9%) because they violated Properties 1 or 2. We observed 
that these 755 samples were not textures but full patterns (e.g., 
sweaters) which are beyond the scope of this study. Ultimately, 
we compiled and knit 306 (21.0%) textures from Stitch-maps. 

Swatch Construction and Measuring 
We constructed and measured textures as follows: (1) machine 
knit a 60 loop by 60 course swatch with an additional border 
including eyelets for alignment; (2) weigh the swatch; (3) lay 
the swatch on fne-grained sandpaper to prevent curling; (4) 
photograph the swatch in the un-stretched state; (5) measure 
the un-stretched swatch across the center axes; (6) connect the 
swatch to a stretching rig and load it with a constant mass; (7) 
photograph the stretched swatch; (8) measure the stretched 
swatch. Our measurement station is shown in Figure 6. 

We knit our swatches on an Shima Seiki SWG91N2 15-gauge 
v-bed knitting machine using Tamm Petit, a 2/30NM (8,147 
yards per pound) acrylic yarn with moderate twist. We used 
our machine’s digital stitch control system to regulate yarn 
tension and our stitch size was 40 with leading set 25. We tiled 
each texture to ft a 60 loop by 60 course swatch, then added 
knit-stitches to the borders to fll in the gaps. The texture is 
surrounded by a 12-stitch-wide border of a checkered knit 
and purl texture to stabilize the swatch edges and normalize 
their connection to the rig. We placed an eyelet at the center 
and ends of each edge of the swatch. To stretch a swatch, we 
hooked each eyelet to rods that can roll freely in one direction, 
pulling the swatch linearly along its width and height. These 



Measurement Min Max Mean STD 
Loops per Tile 1 60 14 17 
Courses per Tile 1 60 11 9 
Loops per Inch 5 25 12 3 
Courses per Inch 9 27 17 2 

Table 2: Texture repetition and gauge data 
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Figure 8: The top case shows the removal of connected loops 
in a path. The bottom case shows the removal of neighboring 
loops in a graph. 

rods were attached to 608g weights. We gently dropped the 
weights off the edge of the table. 

We collected four measurements to derive gauge: stretched 
width (1) and height (2); un-stretched width (3) and height 
(4). Gauge is the number of loops per unit width and height 
in a texture. Gauge decreases as a texture is stretched. We 
calculated opacity as the count of black pixels (matching the 
sand paper background) shown through the knitted texture and 
appearing per photograph. 

Summary of Knitted Textures 
We saw a wide range of gauges and tile sizes; we summarize 
these statistics in Table 2 and show swatch samples in Figure 
7. The smallest horizontal gauge, 25 loops per inch, was 
fve times as tight as the widest. This variation underpins a 
challenge of using textures on knitted objects: it is diffcult 
to match desired measurements using discrete tiles, and the 
variation in gauges can compound the problem when multiple 
textures are integrated into a design. 

KNITCARVING: RESIZING KNITTED TEXTURES 
A knitted object is typically defned with a specifc size, which 
is in turn refned into a specifc loop and course count based on 
the gauge (loops per inch horizontally and vertically). Indeed, 
modifcations to loop count is one of the frst challenges a 
knitter encounters when changing a pattern. If a new texture 
(or a new yarn, or even new needles) is applied to an existing 
design, it is likely to change the gauge. A more complicated 
concern is that textures are discrete tile units. Thus, the knit-
ting designer must not only adjust gauge, but also ensure that 
the size of the texture divides evenly into the number of loops 
and courses of each tile. 

A naïve solution is to stop knitting mid-tile. In the best case, 
this will create an obvious line where the tile is stopped. How-
ever if cables, increases, and decreases are present in the pat-
tern the result may violate Property 1. For example, a tile may 

Figure 9: A “Star” knit/purl pattern is shown with knits rep-
resented as empty squares and purls represented as squares 
containing dots (a). The cost to remove each loop is repre-
sented by a heat-map (b); minimum-cost stitches along a path 
(c) can be removed to narrow the pattern (d). 

have a decrease, but if that decreases’ child loop is removed, 
the parent loops will not have a child loop stabilizing them. 

KnitCarving is an alternate approach that maintains the sta-
bility of a KnitGraph, while removing a continuous path of 
loops that narrows 3 the graph with minimal changes to the 
texture. This is based on the “Seam Carving” technique for 
scaling images [5]. KnitCarving is a dynamic programming 
optimization that removes loops from the path with the least-
signifcance (i.e. lowest cost) to the knittability and aesthetics 
of the KnitGraph. To ensure that a path is continuous, we 
require that loops which are removed in a given course be 
directly above the removed loop in the previous course, or 
directly above one of its yarn-wise neighbors. To maintain 
continuity across repetitions, the user can set an option which 
will remove repetitions before KnitCarving, or may carve the 
texture, maintaining the placement of repetitions. Addition-
ally, rather than removing one path, they can remove a set of 
least valuable paths all at once. 

A loop’s removal cost is calculated locally. The path with the 
minimum removal cost is the path of loops with the lowest sum 
of each loop’s removal cost. This path is found in a dynamic 
programming fashion. First, for each loop we calculate the 
local cost of removing the loop. Next, we use Dijkstra’s 
shortest path algorithm [9] to fnd the path from a loop on 
the cast-on course to a loop on the bind-off course with the 
minimum removal cost. 

Once a path has been selected, the loops in the path are re-
moved from the KnitGraph, leaving behind loop-to-loop edges 
that are missing either a parent or a child. Figure 8 shows the 
two possible cases that can occur. In the simplest case, a loop 
v, its direct child y, and the edge between them are removed. 
The more complex case is when a loop v is removed, but its 
yarn-wise neighbor’s (u’s) child x is lower cost than its own 
child y. In this case, the edge from v to y most be removed 
and the edge from u to x most be reconnected from u to y to 
repair the KnitGraph and maintain Property 1. 

3This same approach can be used to shorten a graph, but for brevity 
we describe the algorithm with respect to width. 



(a) Original swatch (b) 6 columns removed (c) 9 columns removed (d) 12 columns removed (e) 15 columns removed 

Figure 10: The above images show a progression from the original Star texture to the same texture with 15 columns removed by 
texture carving. These photographs were shown to crowd-workers who rated their similarity. Even with a whole repetition width 
removed from the Stars, the pattern remains a recognizable star pattern. 

Group All Textures Knit-Purl Texture Twist Texture Cable Texture Lace Texture Wide Repeats Narrow Repeats 
Knit Carving: Mean (Std.) 51.73 (13.66) 12.53 (3.84) 12.7 (4.04) 13.54 (3.68) 13.19 (3.74) 26.43 (7.02) 25.30 (7.12) 
Control Mean 41.38 (11.57) 10.39 (3.30) 10.78 (3.23) 10.20 (3.42) 10.40 (3.53) 20.46 (6.20) 20.92 (5.90) 
Signifcance T=6.8 (p<.0001) T=4.25 (p<.0001) T=3.71 (p<.0001) T=6.65 (p<.0001) T=5.42 (p<.0001) T=4.12 (p<.0001) T=2.56 (p<.0001) 

Table 3: Summary statistics of a independent-sample t-test comparing the sum of similarity scores for KnitCarving and control 
conditions. The degrees of freedom across all tests was 199. 

Although loops used for knits, purls, twists, and cables are all 
candidates for removal, loops used in decreases and increases 
cannot be removed as easily. For example, recall that a de-
crease involves many parent loops pulled through one child 
loop. If this child loop is removed, it is possible the repaired 
graph will violate either Properties1 or 4 by leaving a parent 
loop without a child or by creating a wide decrease. To forbid 
this, we assign an infnite cost to these loops. 

For all other loops, we calculate a ratio representing that loop’s 
rarity in the graph. We assess the value of the remaining 
removable loops based on the rarity of the stitch they are 
involved in. If a loop’s relationship to other loops is rare in 
the graph, it is more signifcant. Loops are equivalent to other 
loops (i.e. u ≡ v) if all of their incoming and outgoing edges 
have the same orientation. 

|Y | − |{u ∈ Y : l ≡ u}|
cost(l) = (8)

|Y |
Crowd-Sourced Evaluation 
We evaluated KnitCarving in a study with 200 crowd workers. 
Each worker rated the similarity of eight sets of two images 
using a scale from 1 to 10 (10 being the very similar). The frst 
image was a photograph of a texture swatch and the second 
image was a photograph of swatch where the texture had some 
number of paths removed. We asked workers to compare the 
images based on a list of features (i.e. skew, size, number of 
whole repetitions, stretch, opacity) with simple descriptions 
of how they apply to knitted textures. 

We divided workers into two groups: 100 workers compared 
swatches that were narrowed with KnitCarving and 100 work-
ers compared swatches that were narrowed with a control 
algorithm that removes the right most loop from each course 
in a swatch. The control algorithm may violate our Knittability 

properties, so some control swatches visibly unraveled (Figure 
11). Workers were further grouped based on what portion of 
the repetition was removed. 

Eight textures were selected from our texture data set: two 
knit/purl patterns, two twist patterns, two cable patterns, and 
two lace patterns. All eight textures were carved fve times by 
one ffth of their repetition width. Within each texture category, 
one texture had a large repetition (in the third quartile), and the 
other had a small repetition (at least fve, in the frst quartile). 
Within these constraints, we randomly selected the textures. 

Figure 11: KnitCarving is effective on a variety of textures, 
including lace patterns with dependencies across repetitions 
of the pattern. Top: two repetitions of the lace texture “Lit-
tle Branches.” Middle: four columns naïvely removed from 
lace texture, causing it to unravel. Bottom: Four KnitCarves 
removed from texture, leaving behind a similar texture. 



(a) Original texture from Ravelry (left) 
and a new “Twisted” texture (right) 

(b) The hand-knit Hat created by Knit-
Carving the Twisted Texture 

Figure 12: A simple change (replacing knits with cables) (a) 
causes signifcant gauge variances. As a result, the entire hat 
pattern must be adjusted given the new gauge. KnitCarving 
until only a few stitches remains will produce the crown of the 
hat (b). 

We conducted seven independent-samples t-tests to compare 
the sum-total similarity score across (1) all textures per worker, 
(2-5) individual texture types, (6) wide repeat textures, and 
(7) narrow repeat textures. Across all tests, KnitCarving per-
formed signifcantly better than the control algorithm. We 
summarize the results in Table 3. 

Demonstration: Hand-Knitted Custom Hat 
We created a hand-knitting pattern for a KnitCarved hat based 
on a free Ravelry pattern [32]. Knitting patterns specify the 
yarn type and needle size because they dramatically effects 
the texture’s gauge. The pattern author selectively placed 
decreases on each course; essentially doing the work of Knit-
Carving. But when we change the texture, her work is lost. 

Consider a hat; when fattened out it is essentially a triangle, 
with a wide base that narrows down to a few stitches that 
are sewn together at the tip of hat. We extracted KnitSpeak 
from the pattern and modifed it to include twists. Figure 12a 
shows the difference between the basic texture and our twisted 
texture. To create the hat, we carved the pattern, decreasing 
the number of loops in each course over each height repetition 
until only a few loops remain that can be sewn together at the 
tip of the head. We generated KnitSpeak instructions for the 
resulting KnitGraph and hand knitted the hat (Figure 12b). 

KNITPATCHING: COMBINING KNITTED TEXTURES 
Many knit objects are made up of multiple textures; however, 
a beginning knitter may not have the expertise to properly 
combine them. KnitPatching lets knitters use multiple tex-
tures to create unique aesthetic and functional effects. Using 
multiple textures is non-trivial because the interactions be-
tween textures may change the fabric’s shape in unintended 
ways, particularly when the textures have disparate gauges 
(Figure 13). We model different knitted textures as patches on 
a sheet of knitted fabric. Using heuristics based on common 
hand-knitting practice, we optimize the number of loops in 
each patch to minimize gauge variance and produce a fat, 
rectangular sheet of fabric. 

Knitted Sheets made of Patches 
Our knit patching solution focuses on fat (unshaped) Knit-
Graphs. We support combining an arbitrary layout of rectan-

gular, textured patches. Each patch has a position, an assigned 
texture, a width, wp, and height, hp, in inches4. A sheet is 
completely covered in non-overlapping patches. 

To create a KnitGraph for a given sheet, the textured patches 
must be assigned to loops in the KnitGraph so that the sheet 
is knittable. A tile of knitted texture, with width tw in loops 
and height th in courses, is unlikely to exactly match a patch’s 
width and height; tiles are typically just big enough to uniquely 
defne the textural effect. When a region or patch is textured, 
tiles are typically repeated to fll it. 

A texture is defned in units of loops and courses. A texture’s 
gauge converts from loop/course to inches. A texture is de-
fned by two measures of gauge. The texture’s width gauge, 
gtw , is the number of loops per inch. Its height gauge, gth , is 
the number of courses per inch. Gauge was calculated in our 
texture data set and can also easily be hand-calculated from a 
small sample of a provided texture. 

Given a gauge and a patch size, it is trivial to determine how 
many repetitions of the texture ft in the patch in each direction: 
the patch size multiplied by the gauge and divided by the 
tile size. When a patch doesn’t ft perfectly this introduces a 
sizing error (i.e. (pw ·gtw ) mod tw , 0 or (ph ·gth ) mod th , 0). 
KnitCarving is used to ensure that the texture fts into the 
number of loops that satisfy the patch size, but this introduces 
a texture error. 

A third joining error occurs when the number of loops and 
courses of adjacent patches do not match up. If each patch 
were given the number of loops and courses dictated by its 
gauge, no patch would line up because their gauges are dif-
ferent. If not corrected, this can lead to knittability violations 
– since loops or yarn edges will not be able to connect 1-1 
between patches (Properties 1 and 2). 

4Any real world measurement unit could be used. 

Figure 13: A naively joined texture, left, is distorted by 
variance in gauge and limited by repetitions of its constituent 
textures. The KnitPatched texture, right, lies fat and better 
matches the target size. 



Our solution to this problem is KnitPatching. KnitPatch-
ing forces neighboring patches to have the same loop/course 
counts while minimizing the changes made to the patches’ 
textures and sizes. This is done by judiciously deciding to 
increase or decrease the number of loops in a patch. We ap-
proach KnitPatching as an optimization problem. 

KnitPatching Objective Function 
We calculate error at the sheet level in terms of the three error 
metrics introduced above: error in the size of each patch, 
error in the texture of each patch, and error introduced by 
using decreases or increases to ensure correct loop counts 
at the borders between patches. Formally, the error, E, of a 
KnitPatch sheet, S, is a weighted sum of these three errors 
(Equation (9)). α,β , σ denote the weights of each error type. 
We describe each type of error in more detail below. 

E(S) = ∑ αEs(p)+ β Et (p)+ σE j(p) (9) 
p∈S 

Sizing error, Es, describes how much a patch varies from the 
user-specifed size. For a patch, p, this is the proportion of the 
absolute difference in inches between the desired patch size 
and the size predicted given the patch texture’s gauge and the 
assigned loop and course counts, divided by the patch’s size to 
capture the importance of scale. An inch difference in size is 
signifcant on a 4 inch patch, but insignifcant over 100 inches. 

|wp − lp · gtw | |hp − cp · gth |Es(p) = + (10)
wp hp 

Texture error, Et , is introduced by carving a texture to ft 
the assigned loop/course count. KnitCarving will remove 
Δw loops and Δh courses from a patch. Texture error is the 
fraction of total loops/course removed from the patch. Carving 
a path from a patch with 4 loops is more signifcant than 
carving a patch that is 100 loops. Note, that at this point no 
KnitGraph has been constructed, so we do not know the actual 
cost of carving the texture based on the objective function of 
KnitCarving (Equation 8). 

Δwp ΔhpEt (p) = + (11)
lp cp 

Joining error, E j, describes the use of increases and decreases 
at patch borders to align loop counts. This has a similar effect 
to KnitCarving, but instead creates loop-to-loop edges at patch 
borders as needed between misaligned loops. This technique 
can only be used to align the top and bottom edges of a patch. 
The loop count of the top, l↑p, or bottom, l↓p, neighbors of a 
patch, p, is compared to the loop count for the patch, lp, to 
determine the number of new edges needed on each border. 
The joining error, E j, is the number of these new edges divided 
by the original number of loops in p. Again, adding a new 
edge among 4 connected loops is more signifcant than adding 
that edge among 100 connected loops. 

Figure 14: A 4x4 inch panel with cable (left) and lace (right) 
patterns bordered by stretchy garter and ribbing textures 

|l↑p − lp| |l↓p − lp|E j(p) = + (12)
lp lp 

Heuristic-Based Patch Sizing 
This objective function reveals trade-offs between properly 
sized patches and variations in the texture. 

Consider the trade off between sizing and texture errors. To 
minimize sizing error, we would ideally create loops for each 
patch based on its width wp and texture gauge gt (i.e. lp = 
wp · gtw ). However, it is unlikely that these counts will be 
evenly divide by the tile size, lt , so we will need to carve it 
down, which will increase the texture error. The search space 
for minimizing the sum of Es and Et is small, bounded by 
the size of a tile. We search for the minimum weighted sum 
of these errors by iterating over possible loop counts, l̂  p (i.e.
lp − lt ≤ l̂  p ≤ lp + lt ). We use the same approach to determine 
course counts. 

Given these improved loop/course counts on each patch we 
must force these values to align across neighboring patches.

 

 
Some patches will increase their sizing and texture errors to 
accommodate their neighbor. We determine which patches 
will increase their error by assigning each patch a signifcance 
value. This value can be set by a user or determined heuristi-
cally. We use the following heuristics to assign signifcance: 

• Tile Size: The larger the tile size of a texture, the more 
texture error will likely be introduced by changing the 
loop/course count. The larger the tile size, the more signif-
cant the patch. 

• Stretch: Stretchier textures are more likely to stretch to 
match the size of their neighbors, reducing the actual er-
ror in sizing. Thus stretchier textures have lower patch 
signifcance. 

• Carve-ability: Patterns with many increases and decreases 
cannot be KnitCarved as effectively. Higher numbers of 
increases/decreases increase the signifcance. 

Given signifcance values, we propagate the loop/course 
counts from the most signifcant patches to the least signifcant 
patches in a depth-frst traversal across the borders between 
patches. Starting from the most signifcant patch, p, we assign 
its ideal loop count, lp, to each of p’s neighbors, starting with 



the most signifcant neighbor, n. This changes the neighbor’s 
loop count from ln to ln 

0 . Note that we only assign the loops of 
lp proportional to the overlapping width between p and n. n 
then propagates its new loop count, ln, to its most signifcant 
neighbors. We traverse the edges between neighbors until the 
edge of the sheet is reached. 

We repeat the process in parallel to assign course counts. At 
this point the course counts have been optimized. Put another 
way, the objective function for course optimization does not 
include joining. This is because joining changes the number 
of loops using increases and decreases, but we do not support 
an equivalent for courses (this would violate Property 1). 

The fnal step of our algorithm is to optimize loop counts to 
minimized the sum of sizing and texture error. At this point, 
patches have a propagated loop count, l0 p and a loop count that 
minimizes the sum of sizing and texture errors, lp. If these 
counts differ, we can correct this difference by creating new 
loop-to-loop edges to the misaligned loops. There is a trade-
off between creating edges and KnitCarving. If the propagated 
loop count is less than the ideal loop count we can either: 
(1) create a new edge for each additional propagated loop 
(increasing joining error), or (2) carve out loops from the ideal 
loop count (increasing texture error).To fnd the minimum sum 
of the texture and joining error we iterate over the possible 
combinations of KnitCarving and additional edges (i.e. l0 p ≤ 

l̂  p ≤ lp − l0 )p 

This heuristic based approach does not guarantee a globally 
optimal solution, but as shown in Figure 14, it generally results 
in fat knitted sheets. This method can accommodate a variety 
of knitted textures including lace and cable patterns. It is 
particularly well suited to the gauge variances in knit-purl 
patterns such as ribbing and garter stitch. 

LIMITATIONS 
KnitPick introduces a new technique for describing, using, 
and manufacturing knitted textures. However, it is primarily 
suited for creating shaped sheets of knitted textures rather 
than shaped objects. Clever hand-knitters construct complex 
custom-ft garments using the techniques we have automated. 
However, a simplifed, graphical, interface is a necessary next 
step to making knitted textures widely accessible. Further, 
KnitPick’s algorithmic core, KnitCarving and KnitPatching, 
may beneft from objective functions rooted in physics rather 
than hand-knitting practices. Little is codifed about how tex-
tures shape an object. Accurate simulation of this interaction 
between shaping and texture requires an approach based in 
physics, not just visually plausibility [12]. It would be inter-
esting to see if the measured properties of our data set could 
be used to predict the properties of the Kaspar et al. data set 
[14] and/or be combined in other ways to beneft research and 
knitting communities. 

CONCLUSION 
In this paper we presented the KnitPick programming pipeline 
for describing, shaping, combining, and manufacturing tex-
tured knitted objects. Central to this pipeline is a KnitGraph 
structure which maintains four properties: (1) each loop is sta-
bilized by having another loop pulled through it; (2) each loop 

is pulled through loop[s] that were previously constructed; (3) 
cables have an explicit crossing-depth; and (4) all loops are 
pulled a limited distance, preventing yarn tears. Our KnitSpeak 
compiler translates a pre-existing pseudo-natural language cre-
ated by hand-knitters to describe textures into KnitGraphs and 
verifes that they are hand- or machine-knittable. Using this 
compiler, we machine-knit, measured, and photographed 300 
textures. Based on these textures we developed a KnitCarv-
ing algorithm which selectively scales a KnitGraph in width 
and/or height while maintaining the texture’s aesthetic proper-
ties. Finally we contribute KnitPatching, which joins patches 
of knitted textures while accommodating disparate gauges to 
create fat sheets of fabric. Using the KnitPick pipeline, we 
have created three knitted interactions: roll, tug, and slide. 

This work contributes to the body of literature that is helping 
to soften the hard corners of plastic and metal fabrication work. 
Knitting is certainly an important option if we want to create 
comfortable, wearable, or soft solutions to complex problems. 
In future work, we hope to untangle the relationship between 
texture and more complex shapes as represented in hand knit-
ting patterns that describe whole objects. We also hope to 
develop new methods for pattern design by inexperienced knit-
ters and knitters who are not experienced with programming. 
Finally, our work has the potential to inform simulation of 
knitting. 
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