Tactile maps can help people who are blind or have low vision navigate and familiarize themselves with unfamiliar locations. Ideally, tactile maps are created by considering an individual’s unique needs and abilities because of their limited space for representation. However, significant customization is not supported by existing tools for generating tactile maps. We present the Maptimizer system which generates tactile maps that are customized to a user’s preferences and requirements, while making simplified and easy to read tactile maps. Maptimizer uses a two stage optimization process to pair representations with geographic information and tune those representations to present that information more clearly. In a user study with six blind/low-vision participants, Maptimizer helped participants more successfully and efficiently identify locations of interest in unknown areas. These results demonstrate the utility of optimization techniques and generative design in complex accessibility domains that require significant customization by the end user.
Sighted individuals often develop significant knowledge about their environment through what they can visually observe. In contrast, individuals who are visually impaired mostly acquire such knowledge about their environment through information that is explicitly related to them. Our work examines the practices that visually impaired individuals use to learn about their environments and the associated challenges. In the first of our two studies, we uncover four types of information needed to master and navigate the environment. We detail how individuals’ context impacts their ability to learn this information, and outline requirements for independent spatial learning. In a second study, we explore how individuals learn about places and activities in their environment. Our findings show that users not only learn information to satisfy their immediate needs, but also to enable future opportunities – something existing technologies do not fully support. From these findings, we discuss future research and design opportunities to assist the visually impaired in independent spatial learning.
Uncovering information needs for independent spatial learning for users who are visually impaired. Nikola Banovic, Rachel L. Franz, Khai N. Truong, Jennifer Mankoff, and Anind K. DeyIn Proceedings of the 15th international ACM SIGACCESS conference on Computers and accessibility (ASSETS ’13). ACM, New York, NY, USA, Article 24, 8 pages. (pdf)