Computational Design of Knit Templates

We present an interactive design system for knitting that allows users to create template patterns that can be fabricated using an industrial knitting machine. Our interactive design tool is novel in that it allows direct control of key knitting design axes we have identified in our formative study and does so consistently across the variations of an input parametric template geometry. This is achieved with two key technical advances. First, we present an interactive meshing tool that lets users build a coarse quadrilateral mesh that adheres to their knit design guidelines. This solution ensures consistency across the parameter space for further customization over shape variations and avoids helices, promoting knittability. Second, we lift and formalize low-level machine knitting constraints to the level of this coarse quad mesh. This enables us to not only guarantee hand- and machine-knittability, but also provides automatic design assistance through auto-completion and suggestions. We show the capabilities through a set of fabricated examples that illustrate the effectiveness of our approach in creating a wide variety of objects and interactively exploring the space of design variations.

Benjamin JonesYuxuan MeiHaisen ZhaoTaylor Gotfrid, Jennifer Mankoff, Adriana Schulz:
Computational Design of Knit Templates. ACM Trans. Graph. 41(2): 16:1-16:16 (2022)

Four pink knit dresses mounted on four mannekins. each showing different styles of neckline and skirt. Behind each dress is the pattern used to create that dress. The shape of the quads in the pattern demonstrate their relationship to typical knitting patterns -- for example a collar knit in the round has quads that narrow as they go up.

Our interactive design system helps users explore key design axes for knitting to generate highly customized patterns from input shape templates; e.g., a seamless yoke dress with princess-cut apparent seams (a), and drop shoulder dresses with textures on the arms and skirt (b–d). The output of our system is a knit pattern template that lets users vary the shape while preserving the design, for example, creating a child’s dress with short sleeves (d) that matches an adult dress (b), or varying skirt texture and angle, and sleeve knitting direction (c). The system guarantees that all results and variations are machine knittable.

A diagram showing four differently shaped duck faces (a) which all have the same mesh, which can react easily to different shapes by adjusting quad shapes. The final product of a duck with a short, and a long, snout, is shown knitted in lavendar at the right.

Overview of our framework. (a) Triangle meshes from a parametric template (the system deals with a single mesh at a time). (b) Input triangle mesh with user annotations of composition, layout, and direction guidelines. (c) Generated quad mesh patches, which are consistent across template variations. (d) Quad mesh annotated for knitting the body tube in the round using short rows to curve the tube. Blue lines indicate seams. The same design applies to all template variations (two shown here). (e) Duck knit with short rows. (f ) Quad mesh annotated with different textures and orientations; the body is knit as seamed sheets with decreases. (g) Duck knit with textures and a large head from template (f ).

Understanding Disabled Knitters


Taylor Gotfrid
Kelly MackKathryn J. LumEvelyn YangJessica K. HodginsScott E. Hudson, Jennifer Mankoff: Stitching Together the Experiences of Disabled Knitters. CHI 2021: 488:1-488:14

Knitting is a popular craft that can be used to create customized fabric objects such as household items, clothing and toys. Additionally, many knitters find knitting to be a relaxing and calming exercise. Little is known about how disabled knitters use and benefit from knitting, and what accessibility solutions and challenges they create and encounter. We conducted interviews with 16 experienced, disabled knitters and analyzed 20 threads from six forums that discussed accessible knitting to identify how and why disabled knitters knit, and what accessibility concerns remain. We additionally conducted an iterative design case study developing knitting tools for a knitter who found existing solutions insufficient. Our innovations improved the range of stitches she could produce. We conclude by arguing for the importance of improving tools for both pattern generation and modification as well as adaptations or modifications to existing tools such as looms to make it easier to track progress