Improving mobile keyboard typing speed increases in value as more tasks move to a mobile setting. Autocorrect is a powerful way to reduce the time it takes to manually fix typing errors, which results in typing speed increase. However, recent user studies of autocorrect uncovered an unexplored side-effect: participants’ aversion to typing errors despite autocorrect. We present the first computational model of typing on keyboards with autocorrect, which enables precise study of expert typists’ aversion to typing errors on such keyboards. Unlike empirical typing studies that last days, our model evaluates the effects of typists’ aversion to typing errors for any autocorrect accuracy in seconds. We show that typists’ aversion to typing errors adds a self-imposed limit on upper bound typing speeds, which decreases the value of highly accurate autocorrect. Our findings motivate future designs of keyboards with autocorrect that reduce typists’ aversion to typing errors to increase typing speeds.
The Limits of Expert Text Entry Speed on Mobile Keyboards with Autocorrect Nikola Banovic, Ticha Sethapakdi, Yasasvi Hari, Anind K. Dey, Jennifer Mankoff. Mobile HCI 2019.

An example mobile device with a soft keyboard: A) text entry area, which in our study contained study progress, the current phrase to transcribe, and an area for transcribed characters, B) automatically suggested words, and C) a miniQWERTY soft keyboard with autocorrect.


Nikola Banovic, Varun Rao, Abinaya Saravanan, Anind K. Dey, and Jennifer Mankoff. 2017. Quantifying Aversion to Costly Typing Errors in Expert Mobile Text Entry. (To appear) In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM, New York, NY, USA.
Nikola Banovic, Anqi Wang, Yanfeng Jin, Christie Chang, Julian Ramos, Anind K. Dey, and Jennifer Mankoff. 2017. Leveraging Human Routine Models to Detect and Generate Human Behaviors. (To appear) In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM, New York, NY, USA.

Nikola is an alumnus of the group, as of 2018 an assistant professor in Computer Science at the University of Michigan. He did his PhD work under Jennifer Mankoff and Anind Dey, working on developing new models of human routine behaviors that will inform the design and support smart agents that help people develop good routines. His projects included helping aggressive drivers improve their driving routine to become less aggressive, and helping students develop routines that help them balance their academic success and their health and wellbeing.



