Modeling & Generating Routines

Leveraging Human Routine Models to Detect and Generate Human Behaviors

An ability to detect behaviors that negatively impact people’s wellbeing and show people how they can correct those behaviors could enable technology that improves people’s lives. Existing supervised machine learning approaches to detect and generate such behaviors require lengthy and expensive data labeling by domain experts. In this work, we focus on the domain of routine behaviors, where we model routines as a series of frequent actions that people perform in specific situations. We present an approach that bypasses labeling each behavior instance that a person exhibits. Instead, we weakly label instances using people’s demonstrated routine. We classify and generate new instances based on the probability that they belong to the routine model. We illustrate our approach on an example system that helps drivers become aware of and understand their aggressive driving behaviors. Our work enables technology that can trigger interventions and help people reflect on their behaviors when those behaviors are likely to negatively impact them.

drivingsimulator_no_labelNikola Banovic, Anqi Wang, Yanfeng Jin, Christie Chang, Julian Ramos, Anind K. Dey, and Jennifer Mankoff. 2017. Leveraging Human Routine Models to Detect and Generate Human Behaviors. (To appear) In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM, New York, NY, USA.

Modeling Human Routines

Modeling and Understanding Human Routine Behavior

Human routines are blueprints of behavior, which allow people to accomplish their purposeful repetitive tasks and activities. People express their routines through actions that they perform in the particular situations that triggered those actions. An ability to model routines and understand the situations in which they are likely to occur could allow technology to help people improve their bad habits, inexpert behavior, and other suboptimal routines. In this project we explore generalizable routine modeling approaches that encode patterns of routine behavior in ways that allow systems, such as smart agents, to classify, predict, and reason about human actions under the inherent uncertainty present in human behavior. Such technologies can have a positive effect on society by making people healthier, safer, and more efficient in their routine tasks.

Routines_Viz_Tool

Modeling and Understanding Human Routine Behavior
Nikola Banovic, Tofi Buzali, Fanny Chevalier, Jennifer Mankoff, and Anind K. Dey
In Proceedings of the 2016 ACM annual conference on Human Factors in Computing Systems(CHI ’16). ACM, New York, NY, USA.
Honorable Mention Award