Shows barchart of import of different features onetecting change in depression

Detecting Depression △

A series of research projects based on the UWEXP study have focused on detecting depression in various ways. Three such papers are listed below.

Xuhai XuPrerna ChikersalJanine M. DutcherYasaman S. SefidgarWoosuk SeoMichael J. TumminiaDaniella K. VillalbaSheldon CohenKasey G. CreswellJ. David CreswellAfsaneh DoryabPaula S. NuriusEve A. RiskinAnind K. Dey, Jennifer Mankoff:
Leveraging Collaborative-Filtering for Personalized Behavior Modeling: A Case Study of Depression Detection among College Students. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5(1): 41:1-41:27 (2021)

The prevalence of mobile phones and wearable devices enables the passive capturing and modeling of human behavior at an unprecedented resolution and scale. Past research has demonstrated the capability of mobile sensing to model aspects of physical health, mental health, education, and work performance, etc. However, most of the algorithms and models proposed in previous work follow a one-size-fits-all (i.e., population modeling) approach that looks for common behaviors amongst all users, disregarding the fact that individuals can behave very differently, resulting in reduced model performance. Further, black-box models are often used that do not allow for interpretability and human behavior understanding. We present a new method to address the problems of personalized behavior classification and interpretability, and apply it to depression detection among college students. Inspired by the idea of collaborative-filtering, our method is a type of memory-based learning algorithm. It leverages the relevance of mobile-sensed behavior features among individuals to calculate personalized relevance weights, which are used to impute missing data and select features according to a specific modeling goal (e.g., whether the student has depressive symptoms) in different time epochs, i.e., times of the day and days of the week. It then compiles features from epochs using majority voting to obtain the final prediction. We apply our algorithm on a depression detection dataset collected from first-year college students with low data-missing rates and show that our method outperforms the state-of-the-art machine learning model by 5.1% in accuracy and 5.5% in F1 score. We further verify the pipeline-level generalizability of our approach by achieving similar results on a second dataset, with an average improvement of 3.4% across performance metrics. Beyond achieving better classification performance, our novel approach is further able to generate personalized interpretations of the models for each individual. These interpretations are supported by existing depression-related literature and can potentially inspire automated and personalized depression intervention design in the future.The prevalence of mobile phones and wearable devices enables the passive capturing and modeling of human behavior at an unprecedented resolution and scale. Past research has demonstrated the capability of mobile sensing to model aspects of physical health, mental health, education, and work performance, etc. However, most of the algorithms and models proposed in previous work follow a one-size-fits-all (i.e., population modeling) approach that looks for common behaviors amongst all users, disregarding the fact that individuals can behave very differently, resulting in reduced model performance. Further, black-box models are often used that do not allow for interpretability and human behavior understanding. We present a new method to address the problems of personalized behavior classification and interpretability, and apply it to depression detection among college students. Inspired by the idea of collaborative-filtering, our method is a type of memory-based learning algorithm. It leverages the relevance of mobile-sensed behavior features among individuals to calculate personalized relevance weights, which are used to impute missing data and select features according to a specific modeling goal (e.g., whether the student has depressive symptoms) in different time epochs, i.e., times of the day and days of the week. It then compiles features from epochs using majority voting to obtain the final prediction. We apply our algorithm on a depression detection dataset collected from first-year college students with low data-missing rates and show that our method outperforms the state-of-the-art machine learning model by 5.1% in accuracy and 5.5% in F1 score. We further verify the pipeline-level generalizability of our approach by achieving similar results on a second dataset, with an average improvement of 3.4% across performance metrics. Beyond achieving better classification performance, our novel approach is further able to generate personalized interpretations of the models for each individual. These interpretations are supported by existing depression-related literature and can potentially inspire automated and personalized depression intervention design in the future.

Leveraging Routine Behavior and Contextually-Filtered Features for Depression Detection among College Students. Xuhai Xu, Prerna Chikersal, Afsaneh Doryab, Daniella Villaalba, Janine M. Dutcher, Michael J. Tumminia, Tim Althoff, Sheldon Cohen, Kasey Creswell, David Creswell, Jennifer Mankoff and Anind K. Dey. IMWUT, Article No 116. 10.1145/3351274

The rate of depression in college students is rising, which is known to increase suicide risk, lower academic performance and double the likelihood of dropping out. Researchers have used passive mobile sensing technology to assess mental health. Existing work on finding relationships between mobile sensing and depression, as well as identifying depression via sensing features, mainly utilize single data channels or simply concatenate multiple channels. There is an opportunity to identify better features by reasoning about co-occurrence across multiple sensing channels. We present a new method to extract contextually filtered features on passively collected, time-series data from mobile devices via rule mining algorithms. We first employ association rule mining algorithms on two different user groups (e.g., depression vs. non-depression). We then introduce a new metric to select a subset of rules that identifies distinguishing behavior patterns between the two groups. Finally, we consider co-occurrence across the features that comprise the rules in a feature extraction stage to obtain contextually filtered features with which to train classifiers. Our results reveal that the best model with these features significantly outperforms a standard model that uses unimodal features by an average of 9.7% across a variety of metrics. We further verified the generalizability of our approach on a second dataset, and achieved very similar results.

Chikersal, P., Doryab, A., Tumminia, M., Villalba, D., Dutcher, J., Liu, X., Cohen, S., Creswell, K., Mankoff, J., Creswell, D., Goel, M., & Dey, A. “Detecting Depression and Predicting its Onset Using Longitudinal Symptoms Captured by Passive Sensing: A Machine Learning Approach With Robust Feature Selection.” ACM Transactions on Computer-Human Interaction (TOCHI), 2020.

We present a machine learning approach that uses data from smartphones and ftness trackers of 138 college students to identify students that experienced depressive symptoms at the end of the semester and students whose depressive symptoms worsened over the semester. Our novel approach is a feature extraction technique that allows us to select meaningful features indicative of depressive symptoms from longitudinal data. It allows us to detect the presence of post-semester depressive symptoms with an accuracy of 85.7% and change in symptom severity with an accuracy of 85.4%. It also predicts these outcomes with an accuracy of >80%, 11-15 weeks before the end of the semester, allowing ample time for preemptive interventions. Our work has signifcant implications for the detection of health outcomes using longitudinal behavioral data and limited ground truth. By detecting change and predicting symptoms several weeks before their onset, our work also has implications for preventing depression.

Shows barchart of import of different features onetecting change in depression
Bar chart shows value of baseline, bluetooth, calls, campus map, location, phone usage, sleep and step features on detecting change in depression. the best set leads to 85.4% accuracy; all features except bluetooth and calls improve on baseline accuracy of 65.9%

Leave a Reply

Your email address will not be published. Required fields are marked *

41 − = 40