GLOBEM logo, blue text with a world for the O.

Cross-Dataset Generalization for Human Behavior Modeling

Overview; Data; Code

Overview of The Contributions of This Work. We systematically evaluate cross-dataset generalizability of 19 algorithms: 9 prior behavior modeling algorithm for depression detection, 8 recent domain generalization algorithms, and 2 two new algorithms proposed in this paper. Our open-source platform GLOBEM consolidates these 19 algorithms and support using, developing, evaluating various algorithms.

There is a growing body of research revealing that longitudinal passive sensing data from smartphones and wearable devices can capture daily behavior signals for human behavior modeling, such as depression detection. Most prior studies build and evaluate machine learning models using data collected from a single population. However, to ensure that a behavior model can work for a larger group of users, its generalizability needs to be verified on multiple datasets from different populations. We present the first work evaluating cross-dataset generalizability of longitudinal behavior models, using depression detection as an application. We collect multiple longitudinal passive mobile sensing datasets with over 500 users from two institutes over a two-year span, leading to four institute-year datasets. Using the datasets, we closely re-implement and evaluated nine prior depression detection algorithms. Our experiment reveals the lack of model generalizability of these methods. We also implement eight recently popular domain generalization algorithms from the machine learning community. Our results indicate that these methods also do not generalize well on our datasets, with barely any advantage over the naive baseline of guessing the majority. We then present two new algorithms with better generalizability. Our new algorithm, Reorder, significantly and consistently outperforms existing methods on most cross-dataset generalization setups. However, the overall advantage is incremental and still has great room for improvement. Our analysis reveals that the individual differences (both within and between populations) may play the most important role in the cross-dataset generalization challenge. Finally, we provide an open-source benchmark platform GLOBEM – short for Generalization of LOngitudinal BEhavior Modeling – to consolidate all 19 algorithms. GLOBEM can support researchers in using, developing, and evaluating different longitudinal behavior modeling methods. We call for researchers’ attention to model generalizability evaluation for future longitudinal human behavior modeling studies.

Xuhai Xu, Xin Liu, Han Zhang, Weichen Wang, Subigya Nepal, Yasaman S. Sefidgar, Woosuk Seo, Kevin S. Kuehn, Jeremy F. Huckins, Margaret E. Morris, Paula S. Nurius, Eve A. Riskin, Shwetak N. Patel, Tim Althoff, Andrew Campbell, Anind K. Dey, and Jennifer Mankoff. GlOBEM: Cross-Dataset Generalization of Longitudinal Human Behavior Modeling. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6(4): 190:1-190:34 (2022).

Xuhai XuHan ZhangYasaman S. SefidgarYiyi RenXin LiuWoosuk SeoJennifer BrownKevin S. KuehnMike A. MerrillPaula S. NuriusShwetak N. PatelTim AlthoffMargaret MorrisEve A. Riskin, Jennifer Mankoff, Anind K. Dey:
GLOBEM Dataset: Multi-Year Datasets for Longitudinal Human Behavior Modeling Generalization. NeurIPS 2022

Leave a Reply

Your email address will not be published. Required fields are marked *

5 + 5 =