Domain Specific Metaheuristic Optimization

For non-technical domain experts and designers it can be a substantial challenge to create designs that meet domain specific goals. This presents an opportunity to create specialized tools that produce optimized designs in the domain. However, implementing domain specific optimization methods requires a rare combination of programming and domain expertise. Creating flexible design tools with re-configurable optimizers that can tackle a variety of problems in a domain requires even more domain and programming expertise. We present OPTIMISM, a toolkit which enables programmers and domain experts to collaboratively implement an optimization component of design tools. OPTIMISM supports the implementation of metaheuristic optimization methods by factoring them into easy to implement and reuse components: objectives that measure desirable qualities in the domain, modifiers which make useful changes to designs, design and modifier selectors which determine how the optimizer steps through the search space, and stopping criteria that determine when to return results. Implementing optimizers with OPTIMISM shifts the burden of domain expertise from programmers to domain experts.

Megan Hofmann, Nayha Auradkar, Jessica Birchfield, Jerry Cao, Autumn G. Hughes, Gene S.-H. Kim, Shriya Kurpad, Kathryn J. Lum, Kelly Mack, Anisha Nilakantan, Margaret Ellen Seehorn, Emily Warnock, Jennifer Mankoff, Scott E. Hudson: OPTIMISM: Enabling Collaborative Implementation of Domain Specific Metaheuristic Optimization. CHI 2023: 709:1-709:19

Distress and resilience among marginalized undergraduates

Nurius, P. S., Sefidgar, Y. S., Kuehn, K. S, Jake, X, Zhang, H., Browning, A., Riskin, E., Dey, A. K., & Mankoff, J.  Distress among undergraduates: Marginality, stressors and resilience supports. Journal of American College Health, 1-9.

Stress and related mental health struggles are of growing concern at colleges and universities across the country and internationally, with some evidence of levels higher than general population peers. The university experience can pose considerable strain on students, in some cases adding to early and current life stressors, and, if not mitigated, can lead to impaired well-being and academic success/retention.

This study provides a 2019 data snapshot of multiple stressor effects on early-stage students, resilience resources (or the lack thereof) that can mitigate these effects, and sociodemographic characteristics reflecting minoritized identities. Participants were 253 first- and second-year undergraduate students (age =18.76; 49.80% male, 69% students of color) enrolled at the University of Washington.

Multivariate analysis demonstrated significant associations between greater stress exposures and lower levels of resilience resources with each of three mental health indicators—perceived stress (intensity of experienced stress), depression, and anxiety. Stressors such as poor physical health, discrimination exposure, experiencing one or more marginalizing status (e.g., first generation student, having disabilities, sexual minority), and using maladaptive coping strategies (e.g, denial, self-blame) significantly accounted for each of the mental health indicators. Prior stressors such as adverse childhood experiences and other life and academic adversities were also significantly correlated with the mental health variables.

Race/ethnicity was less clearly patterned, although students of Asian descent reported significantly greater depression and anxiety, and females reported higher levels on all distress forms. In terms of resilience supports, those reporting greater social support and perception of oneself as a “bounce back” kind of person reported lesser psychological distress and these variables reduced the effects of stressors. Assessment of student well-being from this same project during the 2020 COVID-19 context indicated that students entering the pandemic with mental health vulnerabilities experienced significantly greater psychological distress and academic strain as the university pivoted toward remote instruction, signaling highly consequential differences (Morris et al., 2021)

These results support the value of “poly-strengths” –multiple forms of resilience- fostering resources–for mitigating the effects of stressors on psychological distress. College leaders are noting increases in the severity of students’ mental health concerns and demand for services, changing the roles of campus counseling centers, and requiring new institutional responses. Better understanding cumulative stress/resilience resource profiles, particularly among marginalized students and those experiencing discrimination, can help universities in prioritizing institutional support responses toward prevention, strengthening resilience, and mitigating psychological distress.

TypeOut: Just-in-Time Self-Affirmation for Reducing Phone Use

Smartphone overuse is related to a variety of issues such as lack of sleep and anxiety. We explore the application of Self-Affirmation Theory on smartphone overuse intervention in a just-in-time manner. We present TypeOut, a just-in-time intervention technique that integrates two components: an in-situ typing-based unlock process to improve user engagement, and self-affirmation-based typing content to enhance effectiveness. We hypothesize that the integration of typing and self-affirmation content can better reduce smartphone overuse. We conducted a 10-week within-subject field experiment (N=54) and compared TypeOut against two baselines: one only showing the self-affirmation content (a common notification-based intervention), and one only requiring typing non-semantic content (a state-of-the-art method). TypeOut reduces app usage by over 50%, and both app opening frequency and usage duration by over 25%, all significantly outperforming baselines. TypeOut can potentially be used in other domains where an intervention may benefit from integrating self-affirmation exercises with an engaging just-in-time mechanism.

Typeout: Leveraging just-in-time self-affirmation for smartphone overuse reduction. Xuhai Xu, Tianyuan Zou, Xiao Han, Yanzhang Li, Ruolin Wang, Tianyi Yuan, Yuntao Wang, Yuanchun Shi, Jennifer Mankoff,and Anind K. Dey. 2022. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI ’22). ACM, New York, NY, USA.

Practices and Needs of Mobile Sensing Researchers

Passive mobile sensing for the purpose of human state modeling is a fast-growing area. It has been applied to solve a wide range of behavior-related problems, including physical and mental health monitoring, affective computing, activity recognition, routine modeling, etc. However, in spite of the emerging literature that has investigated a wide range of application scenarios, there is little work focusing on the lessons learned by researchers, and on guidance for researchers to this approach. How do researchers conduct these types of research studies? Is there any established common practice when applying mobile sensing across different application areas? What are the pain points and needs that they frequently encounter? Answering these questions is an important step in the maturing of this growing sub-field of ubiquitous computing, and can benefit a wide range of audiences. It can serve to educate researchers who have growing interests in this area but have little to no previous experience. Intermediate researchers may also find the results interesting and helpful for reference to improve their skills. Moreover, it can further shed light on the design guidelines for a future toolkit that could facilitate research processes being used. In this paper, we fill this gap and answer these questions by conducting semi-structured interviews with ten experienced researchers from four countries to understand their practices and pain points when conducting their research. Our results reveal a common pipeline that researchers have adopted, and identify major challenges that do not appear in published work but that researchers often encounter. Based on the results of our interviews, we discuss practical suggestions for novice researchers and high-level design principles for a toolkit that can accelerate passive mobile sensing research.

Understanding practices and needs of researchers in human state modeling by passive mobile sensing. Xu, Xuhai, Jennifer Mankoff, and Anind K. Dey. CCF Transactions on Pervasive Computing and Interaction (2021): 1-23.

College during COVID

Mental health of UW students during Spring 2020 varied tremendously: the challenges of online learning during the pandemic were entwined with social isolation, family demands and socioeconomic pressures. In this context, individual differences in coping mechanisms had a big impact. The findings of this paper underline the need for interventions oriented towards problem-focused coping and suggest opportunities for peer role modeling.

College from home during COVID-19: A mixed-methods study of heterogeneous experiences. Morris ME, Kuehn KS, Brown J, Nurius PS, Zhang H, Sefidgar YS, Xuhai X, Riskin EA, Dey A, Consolvo S, Mankoff JC. (2021) PLoS ONE 16(6): e0251580. (reported in UW News and the Hechtinger Report)

A lineplot showing anxiousness (Y axis, varying from 0 to 4) over time (X axis). Each student in the study is plotted as a different line over each day of the quarter. The plot overall looks very messy, but two things are clear; Every student has a very different trajectory from every other, with all of them going up and down multiple times. And the average, overall, shown is a fit line, is fairly low and slightly increasing (from about .75 to just under 1).
Heterogeneity in individuals’ levels of anxiety (reported in ESM). Individual trajectories of anxiety are shown in different line types and colors (dotted versus solid lines represent different participants). Although the mean level of anxiety is 1 on a scale of 0–4, the significant variation in responses invites examination of individuals and subgroups.

This mixed-method study examined the experiences of college students during the COVID-19 pandemic through surveys, experience sampling data collected over two academic quarters (Spring 2019 n1 = 253; Spring 2020 n2 = 147), and semi-structured interviews with 27 undergraduate students. 

There were no marked changes in mean levels of depressive symptoms, anxiety, stress, or loneliness between 2019 and 2020, or over the course of the Spring 2020 term. Students in both the 2019 and 2020 cohort who indicated psychosocial vulnerability at the initial assessment showed worse psychosocial functioning throughout the entire Spring term relative to other students. However, rates of distress increased faster in 2020 than in 2019 for these individuals. Across individuals, homogeneity of variance tests and multi-level models revealed significant heterogeneity, suggesting the need to examine not just means but the variations in individuals’ experiences. 

Thematic analysis of interviews characterizes these varied experiences, describing the contexts for students’ challenges and strategies. This analysis highlights the interweaving of psychosocial and academic distress: Challenges such as isolation from peers, lack of interactivity with instructors, and difficulty adjusting to family needs had both an emotional and academic toll. Strategies for adjusting to this new context included initiating remote study and hangout sessions with peers, as well as self-learning. In these and other strategies, students used technologies in different ways and for different purposes than they had previously. Supporting qualitative insight about adaptive responses were quantitative findings that students who used more problem-focused forms of coping reported fewer mental health symptoms over the course of the pandemic, even though they perceived their stress as more severe. 

Example quotes:

I like to build things and stuff like that. I like to see it in person and feel it. So the fact that everything was online…. I’m just basically reading all the time. I just couldn’t learn that way

Insomnia has been pretty hard for me . . .  I would spend a lot of time lying in bed not doing anything when I had a lot of homework to do the next day. So then I would become stressed about whether I’ll be able to finish that homework or not.”

“It was challenging … being independent and then being pushed back home. It’s a huge change because now you have more rules again”

For a few of my classes I feel like actually [I] was self-learning because sometimes it’s hard to sit through hours of lectures and watch it.”

I would initiate… we have a study group chat and every day I would be like ‘Hey I’m going to be on at this time starting at this time.’ So then I gave them time to all have the room open for Zoom and stuff. Okay and then any time after that they can join and then said I [would] wait like maybe 30 minutes or even an hour…. And then people join and then we work maybe … till midnight, a little bit past midnight

Gender in Online Doctor Reviews

Dunivin Z, Zadunayski L, Baskota U, Siek K, Mankoff J. Gender, Soft Skills, and Patient Experience in Online Physician Reviews: A Large-Scale Text Analysis. Journal of Medical Internet Research. 2020;22(7):e14455.

This study examines 154,305 Google reviews from across the United States for all medical specialties. Many patients use online physician reviews but we need to understand effects of gender on review content. Reviewer gender was inferred from names.

Reviews were coded for overall patient experience (negative or positive) by collapsing a 5-star scale and for general categories (process, positive/negative soft skills). We estimated binary regression models to examine relationships between physician rating, patient experience themes, physician gender, and reviewer gender.

We found considerable bias against female physicians: Reviews of female physicians were considerably more negative than those of male physicians (OR 1.99; P<.001). Critiques of female physicians more often focused on soft skills such as amicability, disrespect and candor. Negative reviews typically have words such as “rude, arrogant, and condescending”

Reviews written by female patients were also more likely to mention disrespect (OR 1.27, P<.001), but female patients were less likely to report disrespect from female doctors than expected.

Finally, patient experiences with the bureaucratic process also impacted reviews. This includes issues like cost of care. Overall, lower patient satisfaction is correlated with high physician dominance (e.g., poor information sharing or using medical jargon)

Limitations of our work include the lack of definitive (or non-binary) information about gender; and the fact that we do not know about the actual outcomes of treatment for reviewers.

Even so, it seems critical that readers attend to the who the reviewers are when reading online reviews. Review sites may also want to provide information about gender differences, control for gender when presenting composite ratings for physicians, and helping users write less biased reviews. Reviewers should be aware of their own gender biases and assess reviews for this (http://slowe.github.io/genderbias/).

Detecting Loneliness

Feelings of loneliness are associated with poor physical and mental health. Detection of loneliness through passive sensing on personal devices can lead to the development of interventions aimed at decreasing rates of loneliness.

Doryab, Afsaneh, et al. “Identifying Behavioral Phenotypes of Loneliness and Social Isolation with Passive Sensing: Statistical Analysis, Data Mining and Machine Learning of Smartphone and Fitbit Data.” JMIR mHealth and uHealth 7.7 (2019): e13209.

Objective: The aim of this study was to explore the potential of using passive sensing to infer levels of loneliness and to identify the corresponding behavioral patterns.

Methods: Data were collected from smartphones and Fitbits (Flex 2) of 160 college students over a semester. The participants completed the University of California, Los Angeles (UCLA) loneliness questionnaire at the beginning and end of the semester. For a classification purpose, the scores were categorized into high (questionnaire score>40) and low (≤40) levels of loneliness. Daily features were extracted from both devices to capture activity and mobility, communication and phone usage, and sleep behaviors. The features were then averaged to generate semester-level features. We used 3 analytic methods: (1) statistical analysis to provide an overview of loneliness in college students, (2) data mining using the Apriori algorithm to extract behavior patterns associated with loneliness, and (3) machine learning classification to infer the level of loneliness and the change in levels of loneliness using an ensemble of gradient boosting and logistic regression algorithms with feature selection in a leave-one-student-out cross-validation manner.

Results: The average loneliness score from the presurveys and postsurveys was above 43 (presurvey SD 9.4 and postsurvey SD 10.4), and the majority of participants fell into the high loneliness category (scores above 40) with 63.8% (102/160) in the presurvey and 58.8% (94/160) in the postsurvey. Scores greater than 1 standard deviation above the mean were observed in 12.5% (20/160) of the participants in both pre- and postsurvey scores. The majority of scores, however, fell between 1 standard deviation below and above the mean (pre=66.9% [107/160] and post=73.1% [117/160]).

Our machine learning pipeline achieved an accuracy of 80.2% in detecting the binary level of loneliness and an 88.4% accuracy in detecting change in the loneliness level. The mining of associations between classifier-selected behavioral features and loneliness indicated that compared with students with low loneliness, students with high levels of loneliness were spending less time outside of campus during evening hours on weekends and spending less time in places for social events in the evening on weekdays (support=17% and confidence=92%). The analysis also indicated that more activity and less sedentary behavior, especially in the evening, was associated with a decrease in levels of loneliness from the beginning of the semester to the end of it (support=31% and confidence=92%).

Conclusions: Passive sensing has the potential for detecting loneliness in college students and identifying the associated behavioral patterns. These findings highlight intervention opportunities through mobile technology to reduce the impact of loneliness on individuals’ health and well-being.

News: Smartphones and Fitbits can spot loneliness in its tracks, Science 101

“Occupational Therapy is Making”

Lyme Disease’s Heterogeneous Impact

An ongoing, and very personal thread of research that our group engages in (due to my own journey with Lyme Disease, which I occasionally blog about here) is research into the impacts of Lyme Disease and opportunities for helping to support patients with Lyme Disease. From a patient perspective, Lyme disease is as tough to deal with as many other more well known conditions [1].

Lyme disease can be difficult to navigate because of the disagreements about its diagnosis and the disease process. In addition, it is woefully underfunded and understudied, given that the CDC estimates around 300,000 new cases occur per year (similar to the rate of breast cancer) [2].

Bar chart showing that Lyme disease is woefully under studied.

As an HCI researcher, I started out trying to understand the relationship that Lyme Disease patients have with digital technologies. For example, we studied the impact of conflicting information online on patients [3] and how patients self-mediate the accessibility of online content [4]. It is my hope to eventually begin exploring technologies that can improve quality of life as well.

However, one thing patients need right away is peer reviewed evidence about the impact that Lyme disease has on patients (e.g. [3]) and the value of treatment for patients (e.g. [4]). Here, as a technologist, the opportunity is to work with big data (thousands of patient reports) to unpack trends and model outcomes in new ways. That research is still in the formative stages, but in our most recent publication [4] we use straightforward subgroup analysis to demonstrate that treatment effectiveness is not adequately captured simply by looking at averages.

This chart shows that there is a large subgroup (about a third) of respondents to our survey who reported positive response to treatment, even though the average response was not positive.

There are many opportunities and much need for further data analysis here, including documenting the impact of differences such as gender on treatment (and access to treatment), developing interventions that can help patients to track symptoms, manage interaction within and between doctors, and navigate accessibility and access issues.

[1] Johnson, L., Wilcox, S., Mankoff, J., & Stricker, R. B. (2014). Severity of chronic Lyme disease compared to other chronic conditions: a quality of life survey. PeerJ2, e322.

[2] Johnson, L., Shapiro, M. & Mankoff, J. Removing the mask of average treatment effects in chronic Lyme Disease research using big data and subgroup analysis.

[3] Mankoff, J., Kuksenok, K., Kiesler, S., Rode, J. A., & Waldman, K. (2011, May). Competing online viewpoints and models of chronic illness. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 589-598). ACM.

[4] Kuksenok, K., Brooks, M., & Mankoff, J. (2013, April). Accessible online content creation by end users. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 59-68). ACM.

 

Infant Oxygen Monitoring

Hospitalized children on continuous oxygen monitors generate >40,000 data points per patient each day. These data do not show context or reveal trends over time, techniques proven to improve comprehension and use. Management of oxygen in hospitalized patients is suboptimal—premature infants spend >40% of each day outside of evidence-based oxygen saturation ranges and weaning oxygen is delayed in infants with bronchiolitis who are physiologically ready. Data visualizations may improve user knowledge of data trends and inform better decisions in managing supplemental oxygen delivery.

First, we studied the workflows and breakdowns for nurses and respiratory therapists (RTs) in the supplemental oxygen delivery of infants with respiratory disease. Secondly, using end-user design we developed a data display that informed decision-making in this context. Our ultimate goal is to improve the overall work process using a combination of visualization and machine learning.

Visualization mockup for displaying O2 saturation over time to nurses.
Visualization mockup for displaying O2 saturation over time to nurses.