Detecting Loneliness

Feelings of loneliness are associated with poor physical and mental health. Detection of loneliness through passive sensing on personal devices can lead to the development of interventions aimed at decreasing rates of loneliness.

Doryab, Afsaneh, et al. “Identifying Behavioral Phenotypes of Loneliness and Social Isolation with Passive Sensing: Statistical Analysis, Data Mining and Machine Learning of Smartphone and Fitbit Data.” JMIR mHealth and uHealth 7.7 (2019): e13209.

Objective: The aim of this study was to explore the potential of using passive sensing to infer levels of loneliness and to identify the corresponding behavioral patterns.

Methods: Data were collected from smartphones and Fitbits (Flex 2) of 160 college students over a semester. The participants completed the University of California, Los Angeles (UCLA) loneliness questionnaire at the beginning and end of the semester. For a classification purpose, the scores were categorized into high (questionnaire score>40) and low (≤40) levels of loneliness. Daily features were extracted from both devices to capture activity and mobility, communication and phone usage, and sleep behaviors. The features were then averaged to generate semester-level features. We used 3 analytic methods: (1) statistical analysis to provide an overview of loneliness in college students, (2) data mining using the Apriori algorithm to extract behavior patterns associated with loneliness, and (3) machine learning classification to infer the level of loneliness and the change in levels of loneliness using an ensemble of gradient boosting and logistic regression algorithms with feature selection in a leave-one-student-out cross-validation manner.

Results: The average loneliness score from the presurveys and postsurveys was above 43 (presurvey SD 9.4 and postsurvey SD 10.4), and the majority of participants fell into the high loneliness category (scores above 40) with 63.8% (102/160) in the presurvey and 58.8% (94/160) in the postsurvey. Scores greater than 1 standard deviation above the mean were observed in 12.5% (20/160) of the participants in both pre- and postsurvey scores. The majority of scores, however, fell between 1 standard deviation below and above the mean (pre=66.9% [107/160] and post=73.1% [117/160]).

Our machine learning pipeline achieved an accuracy of 80.2% in detecting the binary level of loneliness and an 88.4% accuracy in detecting change in the loneliness level. The mining of associations between classifier-selected behavioral features and loneliness indicated that compared with students with low loneliness, students with high levels of loneliness were spending less time outside of campus during evening hours on weekends and spending less time in places for social events in the evening on weekdays (support=17% and confidence=92%). The analysis also indicated that more activity and less sedentary behavior, especially in the evening, was associated with a decrease in levels of loneliness from the beginning of the semester to the end of it (support=31% and confidence=92%).

Conclusions: Passive sensing has the potential for detecting loneliness in college students and identifying the associated behavioral patterns. These findings highlight intervention opportunities through mobile technology to reduce the impact of loneliness on individuals’ health and well-being.

News: Smartphones and Fitbits can spot loneliness in its tracks, Science 101

“Occupational Therapy is Making”: Clinical Rapid Prototyping and Digital Fabrication

Lyme Disease’s Heterogeneous Impact

An ongoing, and very personal thread of research that our group engages in (due to my own journey with Lyme Disease, which I occasionally blog about here) is research into the impacts of Lyme Disease and opportunities for helping to support patients with Lyme Disease. From a patient perspective, Lyme disease is as tough to deal with as many other more well known conditions [1].

Lyme disease can be difficult to navigate because of the disagreements about its diagnosis and the disease process. In addition, it is woefully underfunded and understudied, given that the CDC estimates around 300,000 new cases occur per year (similar to the rate of breast cancer) [2].

Bar chart showing that Lyme disease is woefully under studied.

As an HCI researcher, I started out trying to understand the relationship that Lyme Disease patients have with digital technologies. For example, we studied the impact of conflicting information online on patients [3] and how patients self-mediate the accessibility of online content [4]. It is my hope to eventually begin exploring technologies that can improve quality of life as well.

However, one thing patients need right away is peer reviewed evidence about the impact that Lyme disease has on patients (e.g. [3]) and the value of treatment for patients (e.g. [4]). Here, as a technologist, the opportunity is to work with big data (thousands of patient reports) to unpack trends and model outcomes in new ways. That research is still in the formative stages, but in our most recent publication [4] we use straightforward subgroup analysis to demonstrate that treatment effectiveness is not adequately captured simply by looking at averages.

This chart shows that there is a large subgroup (about a third) of respondents to our survey who reported positive response to treatment, even though the average response was not positive.

There are many opportunities and much need for further data analysis here, including documenting the impact of differences such as gender on treatment (and access to treatment), developing interventions that can help patients to track symptoms, manage interaction within and between doctors, and navigate accessibility and access issues.

[1] Johnson, L., Wilcox, S., Mankoff, J., & Stricker, R. B. (2014). Severity of chronic Lyme disease compared to other chronic conditions: a quality of life survey. PeerJ2, e322.

[2] Johnson, L., Shapiro, M. & Mankoff, J. Removing the mask of average treatment effects in chronic Lyme Disease research using big data and subgroup analysis.

[3] Mankoff, J., Kuksenok, K., Kiesler, S., Rode, J. A., & Waldman, K. (2011, May). Competing online viewpoints and models of chronic illness. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 589-598). ACM.

[4] Kuksenok, K., Brooks, M., & Mankoff, J. (2013, April). Accessible online content creation by end users. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 59-68). ACM.


Infant Oxygen Monitoring

Hospitalized children on continuous oxygen monitors generate >40,000 data points per patient each day. These data do not show context or reveal trends over time, techniques proven to improve comprehension and use. Management of oxygen in hospitalized patients is suboptimal—premature infants spend >40% of each day outside of evidence-based oxygen saturation ranges and weaning oxygen is delayed in infants with bronchiolitis who are physiologically ready. Data visualizations may improve user knowledge of data trends and inform better decisions in managing supplemental oxygen delivery.

First, we studied the workflows and breakdowns for nurses and respiratory therapists (RTs) in the supplemental oxygen delivery of infants with respiratory disease. Secondly, using end-user design we developed a data display that informed decision-making in this context. Our ultimate goal is to improve the overall work process using a combination of visualization and machine learning.

Visualization mockup for displaying O2 saturation over time to nurses.
Visualization mockup for displaying O2 saturation over time to nurses.

Competing Online Viewpoints and Models of Chronic Illness

People with chronic health problems use online resources to understand and manage their condition, but many such resources can present competing and confusing viewpoints. We surveyed and interviewed with people experiencing prolonged symptoms after a Lyme disease diagnosis. We explore how competing viewpoints in online content affect participants’ understanding of their disease. Our results illustrate how chronically ill people search for information and support, and work to help others over time. Participant identity and beliefs about their illness evolved, and this led many to take on new roles, creating content and advising others who were sick. What we learned about online content creation suggests a need for designs that support this journey and engage with complex issues surrounding online health resources.

Jennifer Mankoff, Kit KuksenokSara B. KieslerJennifer A. RodeKelly Waldman:
Competing online viewpoints and models of chronic illness.CHI 2011: 589-598