Detecting Depression △

A series of research projects based on the UWEXP study have focused on detecting depression in various ways. Three such papers are listed below.

Xuhai XuPrerna ChikersalJanine M. DutcherYasaman S. SefidgarWoosuk SeoMichael J. TumminiaDaniella K. VillalbaSheldon CohenKasey G. CreswellJ. David CreswellAfsaneh DoryabPaula S. NuriusEve A. RiskinAnind K. Dey, Jennifer Mankoff:
Leveraging Collaborative-Filtering for Personalized Behavior Modeling: A Case Study of Depression Detection among College Students. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5(1): 41:1-41:27 (2021)

The prevalence of mobile phones and wearable devices enables the passive capturing and modeling of human behavior at an unprecedented resolution and scale. Past research has demonstrated the capability of mobile sensing to model aspects of physical health, mental health, education, and work performance, etc. However, most of the algorithms and models proposed in previous work follow a one-size-fits-all (i.e., population modeling) approach that looks for common behaviors amongst all users, disregarding the fact that individuals can behave very differently, resulting in reduced model performance. Further, black-box models are often used that do not allow for interpretability and human behavior understanding. We present a new method to address the problems of personalized behavior classification and interpretability, and apply it to depression detection among college students. Inspired by the idea of collaborative-filtering, our method is a type of memory-based learning algorithm. It leverages the relevance of mobile-sensed behavior features among individuals to calculate personalized relevance weights, which are used to impute missing data and select features according to a specific modeling goal (e.g., whether the student has depressive symptoms) in different time epochs, i.e., times of the day and days of the week. It then compiles features from epochs using majority voting to obtain the final prediction. We apply our algorithm on a depression detection dataset collected from first-year college students with low data-missing rates and show that our method outperforms the state-of-the-art machine learning model by 5.1% in accuracy and 5.5% in F1 score. We further verify the pipeline-level generalizability of our approach by achieving similar results on a second dataset, with an average improvement of 3.4% across performance metrics. Beyond achieving better classification performance, our novel approach is further able to generate personalized interpretations of the models for each individual. These interpretations are supported by existing depression-related literature and can potentially inspire automated and personalized depression intervention design in the future.The prevalence of mobile phones and wearable devices enables the passive capturing and modeling of human behavior at an unprecedented resolution and scale. Past research has demonstrated the capability of mobile sensing to model aspects of physical health, mental health, education, and work performance, etc. However, most of the algorithms and models proposed in previous work follow a one-size-fits-all (i.e., population modeling) approach that looks for common behaviors amongst all users, disregarding the fact that individuals can behave very differently, resulting in reduced model performance. Further, black-box models are often used that do not allow for interpretability and human behavior understanding. We present a new method to address the problems of personalized behavior classification and interpretability, and apply it to depression detection among college students. Inspired by the idea of collaborative-filtering, our method is a type of memory-based learning algorithm. It leverages the relevance of mobile-sensed behavior features among individuals to calculate personalized relevance weights, which are used to impute missing data and select features according to a specific modeling goal (e.g., whether the student has depressive symptoms) in different time epochs, i.e., times of the day and days of the week. It then compiles features from epochs using majority voting to obtain the final prediction. We apply our algorithm on a depression detection dataset collected from first-year college students with low data-missing rates and show that our method outperforms the state-of-the-art machine learning model by 5.1% in accuracy and 5.5% in F1 score. We further verify the pipeline-level generalizability of our approach by achieving similar results on a second dataset, with an average improvement of 3.4% across performance metrics. Beyond achieving better classification performance, our novel approach is further able to generate personalized interpretations of the models for each individual. These interpretations are supported by existing depression-related literature and can potentially inspire automated and personalized depression intervention design in the future.

Leveraging Routine Behavior and Contextually-Filtered Features for Depression Detection among College Students. Xuhai Xu, Prerna Chikersal, Afsaneh Doryab, Daniella Villaalba, Janine M. Dutcher, Michael J. Tumminia, Tim Althoff, Sheldon Cohen, Kasey Creswell, David Creswell, Jennifer Mankoff and Anind K. Dey. IMWUT, Article No 116. 10.1145/3351274

The rate of depression in college students is rising, which is known to increase suicide risk, lower academic performance and double the likelihood of dropping out. Researchers have used passive mobile sensing technology to assess mental health. Existing work on finding relationships between mobile sensing and depression, as well as identifying depression via sensing features, mainly utilize single data channels or simply concatenate multiple channels. There is an opportunity to identify better features by reasoning about co-occurrence across multiple sensing channels. We present a new method to extract contextually filtered features on passively collected, time-series data from mobile devices via rule mining algorithms. We first employ association rule mining algorithms on two different user groups (e.g., depression vs. non-depression). We then introduce a new metric to select a subset of rules that identifies distinguishing behavior patterns between the two groups. Finally, we consider co-occurrence across the features that comprise the rules in a feature extraction stage to obtain contextually filtered features with which to train classifiers. Our results reveal that the best model with these features significantly outperforms a standard model that uses unimodal features by an average of 9.7% across a variety of metrics. We further verified the generalizability of our approach on a second dataset, and achieved very similar results.

Chikersal, P., Doryab, A., Tumminia, M., Villalba, D., Dutcher, J., Liu, X., Cohen, S., Creswell, K., Mankoff, J., Creswell, D., Goel, M., & Dey, A. “Detecting Depression and Predicting its Onset Using Longitudinal Symptoms Captured by Passive Sensing: A Machine Learning Approach With Robust Feature Selection.” ACM Transactions on Computer-Human Interaction (TOCHI), 2020.

We present a machine learning approach that uses data from smartphones and ftness trackers of 138 college students to identify students that experienced depressive symptoms at the end of the semester and students whose depressive symptoms worsened over the semester. Our novel approach is a feature extraction technique that allows us to select meaningful features indicative of depressive symptoms from longitudinal data. It allows us to detect the presence of post-semester depressive symptoms with an accuracy of 85.7% and change in symptom severity with an accuracy of 85.4%. It also predicts these outcomes with an accuracy of >80%, 11-15 weeks before the end of the semester, allowing ample time for preemptive interventions. Our work has signifcant implications for the detection of health outcomes using longitudinal behavioral data and limited ground truth. By detecting change and predicting symptoms several weeks before their onset, our work also has implications for preventing depression.

Shows barchart of import of different features onetecting change in depression
Bar chart shows value of baseline, bluetooth, calls, campus map, location, phone usage, sleep and step features on detecting change in depression. the best set leads to 85.4% accuracy; all features except bluetooth and calls improve on baseline accuracy of 65.9%

Passively-sensing Discrimination

See the UW News article featuring this study!

A deeper understanding of how discrimination impacts psychological health and well-being of students would allow us to better protect individuals at risk and support those who encounter discrimination. While the link between discrimination and diminished psychological and physical well-being is well established, existing research largely focuses on chronic discrimination and long-term outcomes. A better understanding of the short-term behavioral correlates of discrimination events could help us to concretely quantify the experience, which in turn could support policy and intervention design. In this paper we specifically examine, for the first time, what behaviors change and in what ways in relation to discrimination. We use actively-reported and passively-measured markers of health and well-being in a sample of 209 first-year college students over the course of two academic quarters. We examine changes in indicators of psychological state in relation to reports of unfair treatment in terms of five categories of behaviors: physical activity, phone usage, social interaction, mobility, and sleep. We find that students who encounter unfair treatment become more physically active, interact more with their phone in the morning, make more calls in the evening, and spend less time in bed on the day of the event. Some of these patterns continue the next day.

Passively-sensed Behavioral Correlates of Discrimination Events in College Students. Yasaman S. Sefidgar, Woosuk Seo, Kevin S. Kuehn, Tim Althoff, Anne Browning, Eve Ann Riskin, Paula S. Nurius, Anind K Dey, Jennifer Mankoff. CSCW 2019.

A bar plot sorted by number of reports, with about 100 reports of unfair treatment based on national origin, 90 based on intelligence, 70 based on gender, 60 based on apperance, 50 on age, 45 on sexual orientation, 35 on major, 30 on weight, 30 on height, 20 on income, 10 on disability, 10 on religion, and 10 on learning
Breakdown of 448 reports of unfair treatment by type. National, Orientation, and Learning refer to ancestry or national origin, sexual orientation, and learning disability respectively. See Table 3 for details of all categories. Participants were able to report multiple incidents of unfair treatment, possibly of different types, in each report. As described in the paper, we do not have data on unfair treatment based on race.
A heatplot showing sensor data collected by day in 5 categories: Activity, screen, locations, fitbit, and calls.
A heatplot showing compliance with sensor data collection. Sensor data availability for each day of the study is shown in terms of the number of participants whose data is available on a given day. Weeks of the study are marked on the horizontal axis while different sensors appear on the vertical axis. Important calendar dates (e.g., start / end of the quarter and exam periods) are highlighted as are the weeks of daily surveys. The brighter the cells for a sensor the larger the number of people contributing data for that sensor. Event-based sensors (e.g., calls) are not as bright as sensors continuously sampled (e.g., location) as expected. There was a technical issue in the data collection application in the middle of study, visible as a dark vertical line around the beginning of April.
A diagram showing compliance in surveys, organized by nweek of study. One line shows compliance in the large surveys given at pre, mid and post, which drops from 99% to 94% to 84%. The other line shows average weekly compliance in EMAs, which goes up in the second week to 93% but then drops slowly (with some variability) to 89%
Timeline and completion rate of pre, mid, and post questionnaires as well as EMA surveys. Y axis
shows the completion rates and is narrowed to the range 50-100%. The completion rate of pre, mid, and post questionnaires are percentages of the original pool of 209 participants, whereas EMA completion rates are based on the 176 participants who completed the study. EMA completion rates are computed as the average completion rate of the surveys administered in a certain week of the study. School-related events (i.e., start and end of quarters as well as exam periods) are marked. Dark blue bars (Daily Survey) show the weeks when participants answered surveys every day, four times a day
Barplot showing significance of morning screen use, calls, minutes asleep, time in bed, range of activities, number of steps, anxiety, depression, and frustration on the day before, of, and after unfair treatment. All but minutes asleep are significant at p=.05 or below on the day of discrimination, but this drops off after.
Patterns of feature significance from the day before to two days after the discrimination event. The
shortest bars represent the highest significance values (e.g., depressed and frustrated on day 0; depressed on day 1; morning screen use on day 2). There are no significant differences the day before. Most short-term relationships exist on the day of the event, a few appear on the next day (day 1). On the third day one
significant difference, repeated, from the first day is observed.

Interactiles

The absence of tactile cues such as keys and buttons makes touchscreens difficult to navigate for people with visual impairments. Increasing tactile feedback and tangible interaction on touchscreens can improve their accessibility. However, prior solutions have either required hardware customization or provided limited functionality with static overlays. In addition, the investigation of tactile solutions for large touchscreens may not address the challenges on mobile devices. We therefore present Interactiles, a low-cost, portable, and unpowered system that enhances tactile interaction on Android touchscreen phones. Interactiles consists of 3D-printed hardware interfaces and software that maps interaction with that hardware to manipulation of a mobile app. The system is compatible with the built-in screen reader without requiring modification of existing mobile apps. We describe the design and implementation of Interactiles, and we evaluate its improvement in task performance and the user experience it enables with people who are blind or have low vision.

XiaoyiZhang, TracyTran, YuqianSun, IanCulhane, ShobhitJain, JamesFogarty, JenniferMankoff: Interactiles: 3D Printed Tactile Interfaces to Enhance Mobile Touchscreen Accessibility. ASSETS 2018: To Appear [PDF]

Figure 2. Floating windows created for number pad (left), scrollbar (right) and control button (right bottom). The windows can be transparent; we use colors for demonstration.

Figure 4. Average task completion times of all tasks in the study.