KnitScript: A Domain-Specific Scripting Language for Advanced Machine Knitting

Knitting machines can fabricate complex fabric structures using robust industrial fabrication machines. However, machine knitting’s full capabilities are only available through low-level programming languages that operate on individual machine operations. We present KnitScript, a domain-specific machine knitting scripting language that supports computationally driven knitting designs. KnitScript provides a comprehensive virtual model of knitting machines, giving access to machine-level capabilities as they are needed while automating a variety of tedious and error-prone details. Programmers can extend KnitScript with Python programs to create more complex programs and user interfaces. We evaluate the expressivity of KnitScript through a user study where nine machine knitters used KnitScript code to modify knitting patterns. We demonstrate the capabilities of KnitScript through three demonstrations where we create: a program for generating knitted figures of randomized trees, a parameterized hat template that can be modified with accessibility features, and a pattern for a parametric mixed-material lampshade. KnitScript advances the state of machine-knitting research by providing a platform to develop and share complex knitting algorithms, design tools, and patterns.

Megan Hofmann, Lea Albaugh, Tongyan Wang, Jennifer Mankoff, Scott E. Hudson: KnitScript: A Domain-Specific Scripting Language for Advanced Machine Knitting. UIST 2023: 21:1-21:21

https://youtube.com/watch?v=emV3xNVlg-0%3Fsi%3DLOM1EWRCmhcnzQJY

Domain Specific Metaheuristic Optimization

For non-technical domain experts and designers it can be a substantial challenge to create designs that meet domain specific goals. This presents an opportunity to create specialized tools that produce optimized designs in the domain. However, implementing domain specific optimization methods requires a rare combination of programming and domain expertise. Creating flexible design tools with re-configurable optimizers that can tackle a variety of problems in a domain requires even more domain and programming expertise. We present OPTIMISM, a toolkit which enables programmers and domain experts to collaboratively implement an optimization component of design tools. OPTIMISM supports the implementation of metaheuristic optimization methods by factoring them into easy to implement and reuse components: objectives that measure desirable qualities in the domain, modifiers which make useful changes to designs, design and modifier selectors which determine how the optimizer steps through the search space, and stopping criteria that determine when to return results. Implementing optimizers with OPTIMISM shifts the burden of domain expertise from programmers to domain experts.

Megan Hofmann, Nayha Auradkar, Jessica Birchfield, Jerry Cao, Autumn G. Hughes, Gene S.-H. Kim, Shriya Kurpad, Kathryn J. Lum, Kelly Mack, Anisha Nilakantan, Margaret Ellen Seehorn, Emily Warnock, Jennifer Mankoff, Scott E. Hudson: OPTIMISM: Enabling Collaborative Implementation of Domain Specific Metaheuristic Optimization. CHI 2023: 709:1-709:19

https://youtube.com/watch?v=wjQrFeLbOiw%3Fsi%3DkMTxEkEBjoUrQDJ3

A Multi-StakeholderAnalysis of Accessibility in Higher Education

People with disabilities face extra hardship in institutions of higher education because of accessibility barriers built into the educational system. While prior work investigates the needs of individual stakeholders, this work ofers insights into the communication and collaboration between key stakeholders in creating access in institutions of higher education. The authors present refectionsfrom their experiences working with disability service ofces to meet their access needs and the results from interviewing 6 professors and 6 other disabled students about their experience in achieving access. Our results indicate that there are rich opportunities for technological solutions to support these stakeholders in communicating about and creating access

Kelly Avery MackNatasha A SidikAashaka DesaiEmma J. McDonnellKunal MehtaChristina Zhang, Jennifer Mankoff: Maintaining the Accessibility Ecosystem: a Multi-Stakeholder Analysis of Accessibility in Higher Education. ASSETS 2023: 100:1-100:6

https://youtube.com/watch?v=sAyLMjhQG-w%3Fsi%3Do87In6BXqUK25-3W

COVID-19 Risk Negotation

During the COVID-19 pandemic, risk negotiation became an important precursor to in-person contact. For young adults, social planning generally occurs through computer-mediated communication. Given the importance of social connectedness for mental health and academic engagement, we sought to understand how young adults plan in-person meetups over computer-mediated communication in the context of the pandemic. We present a qualitative study that explores young adults’ risk negotiation during the COVID-19 pandemic, a period of conflicting public health guidance. Inspired by cultural probe studies, we invited participants to express their preferred precautions for one week as they planned in-person meetups. We interviewed and surveyed participants about their experiences. Through qualitative analysis, we identify strategies for risk negotiation, social complexities that impede risk negotiation, and emotional consequences of risk negotiation. Our findings have implications for AI-mediated support for risk negotiation and assertive communication more generally. We explore tensions between risks and potential benefits of such systems.

Margaret E. MorrisJennifer BrownPaula S. NuriusSavanna Yee, Jennifer MankoffSunny Consolvo:
“I Just Wanted to Triple Check… They were all Vaccinated”: Supporting Risk Negotiation in the Context of COVID-19.ACM Trans. Comput. Hum. Interact. 30(4): 60:1-60:31 (2023)

Generative Artificial Intelligence’s Utility for Accessibility

With the recent rapid rise in Generative Artificial Intelligence (GAI) tools, it is imperative that we understand their impact on people with disabilities, both positive and negative. However, although we know that AI in general poses both risks and opportunities for people with disabilities, little is known specifically about GAI in particular.

To address this, we conducted a three-month autoethnography of our use of GAI to meet personal and professional needs as a team of researchers with and without disabilities. Our findings demonstrate a wide variety of potential accessibility-related uses for GAI while also highlighting concerns around verifiability, training data, ableism, and false promises.

Glazko, K. S., Yamagami, M., Desai, A., Mack, K. A., Potluri, V., Xu, X., & Mankoff, J. An Autoethnographic Case Study of Generative Artificial Intelligence’s Utility for Accessibility. ASSETS 2023. https://dl.acm.org/doi/abs/10.1145/3597638.3614548

News: Can AI help boost accessibility? These researchers tested it for themselves

Presentation (starts at about 20mins)

https://youtube.com/watch?v=S40-jPBH820%3Fsi%3DCm17oTaMaDnoQGvK%3F%23t%3D20m26s

How Do People with Limited Movement Personalize Upper-Body Gestures?

Personalized upper-body gestures that can enable input from diverse body parts (e.g., head, neck, shoulders, arms, hands, and fingers), and match the abilities of each user, might make gesture systems more accessible for people with upper-body motor disabilities. Static gesture sets that make ability assumptions about the user (e.g., touch thumb and index finger together in midair) may not be accessible. In our work, we characterize the personalized gesture sets designed by 25 participants with upper-body motor disabilities. We found that the personalized gesture sets that participants designed were specific to their abilities and needs. Six participants mentioned that their inspiration for designing the gestures was based on “how I would do [the gesture] with the abilities that I have”. We suggest three considerations when designing accessible upper-body gesture interfaces: 

1) Track the whole upper body. Our participants used their whole upper-body to perform the gestures, and some switched back and forth from the left to the right hand to combat fatigue.

2) Use sensing mechanisms that are agnostic to the location and orientation of the body. About half of our participants kept their hand on or barely took their hand off of the armrest to decrease arm movement and fatigue.

3) Use sensors that can sense muscle activations without movement. Our participants activated their muscles but did not visibly move in 10% of the personalized gestures.   

Our work highlights the need for personalized upper-body gesture interfaces supported by multimodal biosignal sensors (e.g., accelerometers, sensors that can sense muscle activity like EMG). 

Race, Disability and Accessibility Technology

Working at the Intersection of Race, Disability, and Accessibility

Examinations of intersectionality and identity dimensions in accessibility research have primarily considered disability separately from a person’s race and ethnicity. Accessibility work often does not include considerations of race as a construct, or treats race as a shallow demographic variable, if race is mentioned at all. The lack of attention to race as a construct in accessibility research presents an oversight in our field, often systematically eliminating whole areas of need and vital perspectives from the work we do. Further, there has been little focus on the intersection of race and disability within accessibility research, and the relevance of their interplay. When research in race or disability does not mention the other, this work overlooks the potential to better understand the full nuance of marginalized and “otherized” groups. To address this gap, we present a series of case studies exploring the potential for research that lies at the intersection of race and disability. We provide examples of how to integrate racial equity perspectives into accessibility research, through positive examples found in these case studies and reflect on teaching at the intersection of race, disability, and technology. This paper highlights the value of considering how constructs of race and disability work alongside each other within accessibility research studies, designs of socio-technical systems, and education. Our analysis provides recommendations towards establishing this research direction.

Christina N. HarringtonAashaka DesaiAaleyah LewisSanika MoharanaAnne Spencer Ross, Jennifer Mankoff: Working at the Intersection of Race, Disability and Accessibility. ASSETS 2023: 26:1-26:18 (pdf)

https://youtube.com/watch?v=qRMYjdSTnZs%3Fsi%3D0yhLkUyGKu-WO4Na

Azimuth: Designing Accessible Dashboards for Screen Reader Users

Dashboards are frequently used to monitor and share data across a breadth of domains including business, finance, sports, public policy, and healthcare, just to name a few. The combination of different components (e.g., key performance indicators, charts, filtering widgets) and the interactivity between components makes dashboards powerful interfaces for data monitoring and analysis. However, these very characteristics also often make dashboards inaccessible to blind and low vision (BLV) users. Through a co-design study with two screen reader users, we investigate challenges faced by BLV users and identify design goals to support effective screen reader-based interactions with dashboards. Operationalizing the findings from the co-design process, we present a prototype system, Azimuth, that generates dashboards optimized for screen reader-based navigation along with complementary descriptions to support dashboard comprehension and interaction. Based on a follow-up study with five BLV participants, we showcase how our generated dashboards support BLV users and enable them to perform both targeted and open-ended analysis. Reflecting on our design process and study feedback, we discuss opportunities for future work on supporting interactive data analysis, understanding dashboard accessibility at scale, and investigating alternative devices and modalities for designing accessible visualization dashboards.

Arjun Srinivasan, Tim Harshbarger, Darrell Hilliker and Jennifer Mankoff: University of Washington (2023): “Azimuth: Designing Accessible Dashboards for Screen Reader Users” ASSETS 2023.

Physical Therapy Accessibility for People with Disabilities and/or Chronic Conditions

Many individuals with disabilities and/or chronic conditions experience symptoms that may require intermittent or on-going medical care. However, healthcare is often overlooked as an area where accessibility needs to be addressed to improve physical and digital interactions between patients and healthcare providers. We discuss the challenges faced by individuals with disabilities and chronic conditions in accessing physical therapy and how technology can help improve access. We interviewed 15 people and found both social (e.g. financial constraints, lack of accessible transportation) and physiological (e.g. chronic pain) barriers to accessing physical therapy. Our study suggests that technology interventions that are adaptable, support movement tracking, and community building may support access to physical therapy.  Rethinking access to physical therapy for people with disabilities or chronic conditions from a lens that includes social and physiological barriers presents opportunities to integrate accessibility and adaptability into physical therapy technology.

“I’m Just Overwhelmed”: Investigating Physical Therapy Accessibility and Technology Interventions for People with Disabilities and/or Chronic Conditions. Momona Yamagami, Kelly Mack, Jennifer Mankoff, and Katherine M. Steele. ACM Transactions on Accessible Computing 15, no. 4 (2022): 1-22.

The Role of Speechreading in Online d/DHH Communication Accessibility

Speechreading is the art of using visual and contextual cues in the environment to support listening. Often used by d/Deaf and Hard-of-Hearing (d/DHH) individuals, it highlights nuances of rich communication. However, lived experiences of speechreaders are underdocumented in the literature, and the impact of online environment and interaction of captioning with speechreading has not been explored. To bridge these gaps, we conducted a three-part study consisting of formative interviews, design probes and design sessions with 12 d/DHH individuals who speechread.