Caiwei is a 3rd year undergraduate at UW. Her majors are Computer Science & Applied and Computational Mathematical Science, in the track of Data Science and Statistics. She has great interests in data manipulation and machine learning and would like to explore more in related fields. Currently working on a UWEXP project, she focuses on applying data analysis and machine learning skills to analyze students’ mental health.
Automatic knitting machines are robust, digital fabrication devices that enable rapid and reliable production of attractive, functional objects by combining stitches to produce unique physical properties. However, no existing design tools support optimization for desirable physical and aesthetic knitted properties. We present KnitGIST (Generative Instantiation Synthesis Toolkit for knitting), a program synthesis pipeline and library for generating hand- and machine-knitting patterns by intuitively mapping objectives to tactics for texture design. KnitGIST generates a machine-knittable program in a domain-specific programming language.
The prevalence of mobile phones and wearable devices enables the passive capturing and modeling of human behavior at an unprecedented resolution and scale. Past research has demonstrated the capability of mobile sensing to model aspects of physical health, mental health, education, and work performance, etc. However, most of the algorithms and models proposed in previous work follow a one-size-fits-all (i.e., population modeling) approach that looks for common behaviors amongst all users, disregarding the fact that individuals can behave very differently, resulting in reduced model performance. Further, black-box models are often used that do not allow for interpretability and human behavior understanding. We present a new method to address the problems of personalized behavior classification and interpretability, and apply it to depression detection among college students. Inspired by the idea of collaborative-filtering, our method is a type of memory-based learning algorithm. It leverages the relevance of mobile-sensed behavior features among individuals to calculate personalized relevance weights, which are used to impute missing data and select features according to a specific modeling goal (e.g., whether the student has depressive symptoms) in different time epochs, i.e., times of the day and days of the week. It then compiles features from epochs using majority voting to obtain the final prediction. We apply our algorithm on a depression detection dataset collected from first-year college students with low data-missing rates and show that our method outperforms the state-of-the-art machine learning model by 5.1% in accuracy and 5.5% in F1 score. We further verify the pipeline-level generalizability of our approach by achieving similar results on a second dataset, with an average improvement of 3.4% across performance metrics. Beyond achieving better classification performance, our novel approach is further able to generate personalized interpretations of the models for each individual. These interpretations are supported by existing depression-related literature and can potentially inspire automated and personalized depression intervention design in the future.The prevalence of mobile phones and wearable devices enables the passive capturing and modeling of human behavior at an unprecedented resolution and scale. Past research has demonstrated the capability of mobile sensing to model aspects of physical health, mental health, education, and work performance, etc. However, most of the algorithms and models proposed in previous work follow a one-size-fits-all (i.e., population modeling) approach that looks for common behaviors amongst all users, disregarding the fact that individuals can behave very differently, resulting in reduced model performance. Further, black-box models are often used that do not allow for interpretability and human behavior understanding. We present a new method to address the problems of personalized behavior classification and interpretability, and apply it to depression detection among college students. Inspired by the idea of collaborative-filtering, our method is a type of memory-based learning algorithm. It leverages the relevance of mobile-sensed behavior features among individuals to calculate personalized relevance weights, which are used to impute missing data and select features according to a specific modeling goal (e.g., whether the student has depressive symptoms) in different time epochs, i.e., times of the day and days of the week. It then compiles features from epochs using majority voting to obtain the final prediction. We apply our algorithm on a depression detection dataset collected from first-year college students with low data-missing rates and show that our method outperforms the state-of-the-art machine learning model by 5.1% in accuracy and 5.5% in F1 score. We further verify the pipeline-level generalizability of our approach by achieving similar results on a second dataset, with an average improvement of 3.4% across performance metrics. Beyond achieving better classification performance, our novel approach is further able to generate personalized interpretations of the models for each individual. These interpretations are supported by existing depression-related literature and can potentially inspire automated and personalized depression intervention design in the future.
The rate of depression in college students is rising, which is known to increase suicide risk, lower academic performance and double the likelihood of dropping out. Researchers have used passive mobile sensing technology to assess mental health. Existing work on finding relationships between mobile sensing and depression, as well as identifying depression via sensing features, mainly utilize single data channels or simply concatenate multiple channels. There is an opportunity to identify better features by reasoning about co-occurrence across multiple sensing channels. We present a new method to extract contextually filtered features on passively collected, time-series data from mobile devices via rule mining algorithms. We first employ association rule mining algorithms on two different user groups (e.g., depression vs. non-depression). We then introduce a new metric to select a subset of rules that identifies distinguishing behavior patterns between the two groups. Finally, we consider co-occurrence across the features that comprise the rules in a feature extraction stage to obtain contextually filtered features with which to train classifiers. Our results reveal that the best model with these features significantly outperforms a standard model that uses unimodal features by an average of 9.7% across a variety of metrics. We further verified the generalizability of our approach on a second dataset, and achieved very similar results.
We present a machine learning approach that uses data from smartphones and ftness trackers of 138 college students to identify students that experienced depressive symptoms at the end of the semester and students whose depressive symptoms worsened over the semester. Our novel approach is a feature extraction technique that allows us to select meaningful features indicative of depressive symptoms from longitudinal data. It allows us to detect the presence of post-semester depressive symptoms with an accuracy of 85.7% and change in symptom severity with an accuracy of 85.4%. It also predicts these outcomes with an accuracy of >80%, 11-15 weeks before the end of the semester, allowing ample time for preemptive interventions. Our work has signifcant implications for the detection of health outcomes using longitudinal behavioral data and limited ground truth. By detecting change and predicting symptoms several weeks before their onset, our work also has implications for preventing depression.
Bar chart shows value of baseline, bluetooth, calls, campus map, location, phone usage, sleep and step features on detecting change in depression. the best set leads to 85.4% accuracy; all features except bluetooth and calls improve on baseline accuracy of 65.9%
This study examines 154,305 Google reviews from across the United States for all medical specialties. Many patients use online physician reviews but we need to understand effects of gender on review content. Reviewer gender was inferred from names.
Reviews were coded for overall patient experience (negative or positive) by collapsing a 5-star scale and for general categories (process, positive/negative soft skills). We estimated binary regression models to examine relationships between physician rating, patient experience themes, physician gender, and reviewer gender.
We found considerable bias against female physicians: Reviews of female physicians were considerably more negative than those of male physicians (OR 1.99; P<.001). Critiques of female physicians more often focused on soft skills such as amicability, disrespect and candor. Negative reviews typically have words such as “rude, arrogant, and condescending”
Reviews written by female patients were also more likely to mention disrespect (OR 1.27, P<.001), but female patients were less likely to report disrespect from female doctors than expected.
Finally, patient experiences with the bureaucratic process also impacted reviews. This includes issues like cost of care. Overall, lower patient satisfaction is correlated with high physician dominance (e.g., poor information sharing or using medical jargon)
Limitations of our work include the lack of definitive (or non-binary) information about gender; and the fact that we do not know about the actual outcomes of treatment for reviewers.
Even so, it seems critical that readers attend to the who the reviewers are when reading online reviews. Review sites may also want to provide information about gender differences, control for gender when presenting composite ratings for physicians, and helping users write less biased reviews. Reviewers should be aware of their own gender biases and assess reviews for this (http://slowe.github.io/genderbias/).
It was my honor this year to participate in an auto-ethnographic effort to explore accessibility research from a combination of personal and theoretical perspectives. In the process, and thanks to my amazing co-authors, I learned so much about myself, disability studies, ableism and accessibility.
Abstract: Accessibility research and disability studies are intertwined fields focused on, respectively, building a world more inclusive of people with disability and understanding and elevating the lived experiences of disabled people. Accessibility research tends to focus on creating technology related to impairment, while disability studies focuses on understanding disability and advocating against ableist systems. Our paper presents a reflexive analysis of the experiences of three accessibility researchers and one disability studies scholar. We focus on moments when our disability was misunderstood and causes such as expecting clearly defined impairments. We derive three themes: ableism in research, oversimplification of disability, and human relationships around disability. From these themes, we suggest paths toward more strongly integrating disability studies perspectives and disabled people into accessibility research.
Wenjun Chen is a senior student double majoring in Computer Science and Informatics. Her passion lies in leveraging behavioral data from the web, social media, and social interactions to generate actionable insights to address social good and enhance people’s lives. She is currently working on the RainClassroom Data Mining Project in the lab.
I am a junior majoring in Applied & Computational Mathematical Science. With interests and enthusiasm in data science and information technology, I’m studying coursework related with math, statistics, and computer science, and practicing programming and data manipulation work. To learn how we apply data to solve problems and approach research goals, I am currently working on the UWEXP study to help improve the way of handling and processing the survey data.
Kathryn Lum is a third year undergraduate majoring in Computer Science at the University of Washington – Seattle. She is interested in the intersection of technology and social good. Under Kelly Mack and Megan Hofmann, Kathryn is working on the tactile maps project, researching the use of tactile maps in navigation for people with visual impairments.
Tim is a second-year undergraduate majoring in Statistics. His passion lies in data science and human-computer interaction. He is currently working on the UWEXP project to develop technologies that collect and improve student’s experience.
Jessica Birchfield is a junior majoring in Computer Science with a Chinese minor. She is passionate about using technology to address human needs and enhance people’s lives. Her interests include fabrication, computer animation, and computer graphics. She is currently working on the Tactile Maps project in the lab.