Expressing and Reusing Design Intent in 3D Models

Picture of 3D models and a printout

Megan K Hofmann, Gabriella Han, Scott E Hudson, Jennifer Mankoff. Greater Than the Sum of Its PARTs: Expressing and Reusing Design Intent in 3D Models CHI 2018, To Appear.

With the increasing popularity of consumer-grade 3D printing, many people are creating, and even more using, objects shared on sites such as Thingiverse. However, our formative study of 962 Thingiverse models shows a lack of re-use of models, perhaps due to the advanced skills needed for 3D modeling. An end user program perspective on 3D modeling is needed. Our framework (PARTs) empowers amateur modelers to graphically specify design intent through geometry. PARTs includes a GUI, scripting API and exemplar library of assertions which test design expectations and integrators which act on intent to create geometry. PARTs lets modelers integrate advanced, model specific functionality into designs, so that they can be re-used and extended, without programming. In two workshops, we show that PARTs helps to create 3D printable models, and modify existing models more easily than with a standard tool.

Picture of 3D models and a printout

Uncertainty in Measurement

Examples of 3d printed objects that are robust to measurement uncertainty.

Kim, J., Guo, A., Yeh, T., Hudson, S. E., & Mankoff, J. (2017, June). Understanding Uncertainty in Measurement and Accommodating its Impact in 3D Modeling and Printing. In Proceedings of the 2017 Conference on Designing Interactive Systems (pp. 1067-1078). ACM.

3D printing enables everyday users to augment objects around them with personalized adaptations. There has been a proliferation of 3D models available on sharing platforms supporting this. If a model is parametric, a novice modeler can obtain a custom model simply by entering a few parameters (e.g., in the Customizer tool on Thingiverse.com). In theory, such custom models could fit any real world object one intends to augment. But in practice, a printed model seldom fits on the first try; multiple iterations are often necessary, wasting a considerable amount of time and material. We argue that parameterization or scaling alone is not sufficient for customizability, because users must correctly measure an object to specify parameters.

In a study of attempts to measure length, angle, and diameter, we demonstrate measurement errors as a significant (yet often overlooked) factor that adversely impacts the adaptation of 3D models to existing objects, requiring increased iteration. Images taken from our study are shown below.

We argue for a new design principle—accommodating measurement uncertainty—that designers as well as novices should begin to consider. We offer two strategies—modular joint and, buffer insertion—to help designers to build models that are robust to measurement uncertainty. Examples shown below.

 

 

Volunteer AT Fabricators

Perry-Hill, J., Shi, P., Mankoff, J. & Ashbrook, D. Understanding Volunteer AT Fabricators: Opportunities and Challenges in DIY-AT for Others in e-NABLE. Accepted to CHI 2017

We present the results of a study of e-NABLE, a distributed, collaborative volunteer effort to design and fabricate upper-limb assistive technology devices for limb-different users. Informed by interviews with 14 stakeholders in e-NABLE, including volunteers and clinicians, we discuss differences and synergies among each group with respect to motivations, skills, and perceptions of risks inherent in the project. We found that both groups are motivated to be involved in e-NABLE by the ability to use their skills to help others, and that their skill sets are complementary, but that their different perceptions of risk may result in uneven outcomes or missed expectations for end users. We offer four opportunities for design and technology to enhance the stakeholders’ abilities to work together.

Screen Shot 2017-03-14 at 1.09.13 PMA variety of 3D-printed upper-limb assistive technology devices designed and produced by volunteers in the e-NABLE community. Photos were taken by the fourth author in the e-NABLE lab on RIT’s campus.