Domain Specific Metaheuristic Optimization

For non-technical domain experts and designers it can be a substantial challenge to create designs that meet domain specific goals. This presents an opportunity to create specialized tools that produce optimized designs in the domain. However, implementing domain specific optimization methods requires a rare combination of programming and domain expertise. Creating flexible design tools with re-configurable optimizers that can tackle a variety of problems in a domain requires even more domain and programming expertise. We present OPTIMISM, a toolkit which enables programmers and domain experts to collaboratively implement an optimization component of design tools. OPTIMISM supports the implementation of metaheuristic optimization methods by factoring them into easy to implement and reuse components: objectives that measure desirable qualities in the domain, modifiers which make useful changes to designs, design and modifier selectors which determine how the optimizer steps through the search space, and stopping criteria that determine when to return results. Implementing optimizers with OPTIMISM shifts the burden of domain expertise from programmers to domain experts.

Megan Hofmann, Nayha Auradkar, Jessica Birchfield, Jerry Cao, Autumn G. Hughes, Gene S.-H. Kim, Shriya Kurpad, Kathryn J. Lum, Kelly Mack, Anisha Nilakantan, Margaret Ellen Seehorn, Emily Warnock, Jennifer Mankoff, Scott E. Hudson: OPTIMISM: Enabling Collaborative Implementation of Domain Specific Metaheuristic Optimization. CHI 2023: 709:1-709:19

https://youtube.com/watch?v=wjQrFeLbOiw%3Fsi%3DkMTxEkEBjoUrQDJ3

A Multi-StakeholderAnalysis of Accessibility in Higher Education

People with disabilities face extra hardship in institutions of higher education because of accessibility barriers built into the educational system. While prior work investigates the needs of individual stakeholders, this work ofers insights into the communication and collaboration between key stakeholders in creating access in institutions of higher education. The authors present refectionsfrom their experiences working with disability service ofces to meet their access needs and the results from interviewing 6 professors and 6 other disabled students about their experience in achieving access. Our results indicate that there are rich opportunities for technological solutions to support these stakeholders in communicating about and creating access

Kelly Avery MackNatasha A SidikAashaka DesaiEmma J. McDonnellKunal MehtaChristina Zhang, Jennifer Mankoff: Maintaining the Accessibility Ecosystem: a Multi-Stakeholder Analysis of Accessibility in Higher Education. ASSETS 2023: 100:1-100:6

https://youtube.com/watch?v=sAyLMjhQG-w%3Fsi%3Do87In6BXqUK25-3W

Generative Artificial Intelligence’s Utility for Accessibility

With the recent rapid rise in Generative Artificial Intelligence (GAI) tools, it is imperative that we understand their impact on people with disabilities, both positive and negative. However, although we know that AI in general poses both risks and opportunities for people with disabilities, little is known specifically about GAI in particular.

To address this, we conducted a three-month autoethnography of our use of GAI to meet personal and professional needs as a team of researchers with and without disabilities. Our findings demonstrate a wide variety of potential accessibility-related uses for GAI while also highlighting concerns around verifiability, training data, ableism, and false promises.

Glazko, K. S., Yamagami, M., Desai, A., Mack, K. A., Potluri, V., Xu, X., & Mankoff, J. An Autoethnographic Case Study of Generative Artificial Intelligence’s Utility for Accessibility. ASSETS 2023. https://dl.acm.org/doi/abs/10.1145/3597638.3614548

News: Can AI help boost accessibility? These researchers tested it for themselves

Presentation (starts at about 20mins)

https://youtube.com/watch?v=S40-jPBH820%3Fsi%3DCm17oTaMaDnoQGvK%3F%23t%3D20m26s

Physical Therapy Accessibility for People with Disabilities and/or Chronic Conditions

Many individuals with disabilities and/or chronic conditions experience symptoms that may require intermittent or on-going medical care. However, healthcare is often overlooked as an area where accessibility needs to be addressed to improve physical and digital interactions between patients and healthcare providers. We discuss the challenges faced by individuals with disabilities and chronic conditions in accessing physical therapy and how technology can help improve access. We interviewed 15 people and found both social (e.g. financial constraints, lack of accessible transportation) and physiological (e.g. chronic pain) barriers to accessing physical therapy. Our study suggests that technology interventions that are adaptable, support movement tracking, and community building may support access to physical therapy.  Rethinking access to physical therapy for people with disabilities or chronic conditions from a lens that includes social and physiological barriers presents opportunities to integrate accessibility and adaptability into physical therapy technology.

“I’m Just Overwhelmed”: Investigating Physical Therapy Accessibility and Technology Interventions for People with Disabilities and/or Chronic Conditions. Momona Yamagami, Kelly Mack, Jennifer Mankoff, and Katherine M. Steele. ACM Transactions on Accessible Computing 15, no. 4 (2022): 1-22.

Making a Medical Maker’s Playbook: An Ethnographic Study of Safety-Critical Collective Design by Makers in Response to COVID-19

Megan Hofmann, Udaya Lakshmi, Kelly Mack, Rosa I. Arriaga, Scott E. Hudson, and Jennifer Mankoff. Making a Medical Maker’s Playbook: An Ethnographic Study of Safety-Critical Collective Design by Makers in Response to COVID-19. Proc. ACM Hum. Comput. Interact. 6(CSCW1): 101:1-101:26 (2022).

We present an ethnographic study of a maker community that conducted safety-driven medical making to deliver over 80,000 devices for use at medical facilities in response to the COVID-19 pandemic. To achieve this, the community had to balance their clinical value of safety with the maker value of broadened participation in design and production. We analyse their struggles and achievement through the artifacts they produced and the labors of key facilitators between diverse community members. Based on this analysis we provide insights into how medical maker communities, which are necessarily risk-averse and safety-oriented, can still support makers’ grassroots efforts to care for their communities. Based on these findings, we recommend that design tools enable adaptation to a wider set of domains, rather than exclusively presenting information relevant to manufacturing. Further, we call for future work on the portability of designs across different types of printers which could enable broader participation in future maker efforts at this scale.

Rapid Convergence: The Outcomes of Making PPE during a Healthcare Crisis

Kelly Avery MackMegan HofmannUdaya LakshmiJerry CaoNayha AuradkarRosa I. ArriagaScott E. HudsonJennifer Mankoff. Rapid Convergence: The Outcomes of Making PPE During a Healthcare Crisis. [Link to the paper]

The U.S. National Institute of Health (NIH) 3D Print Exchange is a public, open-source repository for 3D printable medical device designs with contributions from clinicians, expert-amateur makers, and people from industry and academia. In response to the COVID-19 pandemic, the NIH formed a collection to foster submissions of low-cost, locally-manufacturable personal protective equipment (PPE). We evaluated the 623 submissions in this collection to understand: what makers contributed, how they were made, who made them, and key characteristics of their designs. We found an immediate design convergence to manufacturing-focused remixes of a few initial designs affiliated with NIH partners and major for-profit groups. The NIH worked to review safe, effective designs but was overloaded by manufacturing-focused design adaptations. Our work contributes insights into: the outcomes of distributed, community-based medical making; the features that the community accepted as “safe” making; and how platforms can support regulated maker activities in high-risk domains.

Chronically Under-Addressed: Considerations for HCI Accessibility Practice with Chronically III People

Accessible design and technology could support the large and growing group of people with chronic illnesses. However, human computer interactions(HCI) has largely approached people with chronic illnesses through a lens of medical tracking or treatment rather than accessibility. We describe and demonstrate a framework for designing technology in ways that center the chronically ill experience. First, we identify guiding tenets: 1) treating chronically ill people not as patients but as people with access needs and expertise, 2) recognizing the way that variable ability shapes accessibility considerations, and 3) adopting a theoretical understanding of chronic illness that attends to the body. We then illustrate these tenets through autoethnographic case studies of two chronically ill authors using technology. Finally, we discuss implications for technology design, including designing for consequence-based accessibility, considering how to engage care communities, and how HCI research can engage chronically ill participants in research.

Kelly Mack*, Emma J. McDonnell*, Leah Findlater, and Heather D. Evans. In The 24th International ACM SIGACCESS Conference on Computers and Accessibility.

COVID-19 and Remote Learning for Students with Disabilities

Han Zhang, Margaret E. Morris, Paula S. Nurius, Kelly Mack, Jennifer Brown, Kevin S. Kuehn, Yasaman S. Sefidgar, Xuhai Xu, Eve A. Riskin, Anind K. Dey and Jennifer Mankoff. Impact of Online Learning in the Context of COVID-19 on Undergraduates with Disabilities and Mental Health Concerns. ACM Transactions on Accessible Computing (TACCESS).

The COVID-19 pandemic upended college education and the experiences of students due to the rapid and uneven shift to online learning. This study examined the experiences of students with disabilities with online learning, with a consideration of surrounding stressors such as financial pressures. In a mixed method approach, we compared 28 undergraduate students with disabilities(including mental health concerns) to their peers during 2020, to assess differences and similarities in their educational concerns, stress levels and COVID-19 related adversities. We found that students with disabilities entered the Spring quarter of 2020 with significantly higher concerns about classes going online, and reported more recent negative life events than other students. These differences between the two groups diminished three months later with the exception of recent negative life events. For a fuller understanding of students’ experiences, we conducted qualitative analysis of open ended interviews. We examined both positive and negative experiences with online learning among students with disabilities and mental health concerns. Online learning enabled greater access – e.g., reducing the need for travel to campus–alongside ways in which online learning impeded academic engagement–e.g., reducing interpersonal interaction. Learning systems need to continue to meet the diverse and dynamic needs of students with disabilities.

Maptimizer

Megan HofmannKelly MackJessica BirchfieldJerry CaoAutumn G. HughesShriya KurpadKathryn J. LumEmily WarnockAnat CaspiScott E. Hudson, Jennifer Mankoff:
Maptimizer: Using Optimization to Tailor Tactile Maps to Users Needs. CHI 2022: 592:1-592:15 [pdf]

Tactile maps can help people who are blind or have low vision navigate and familiarize themselves with unfamiliar locations. Ideally, tactile maps are created by considering an individual’s unique needs and abilities because of their limited space for representation. However, significant customization is not supported by existing tools for generating tactile maps. We present the Maptimizer system which generates tactile maps that are customized to a user’s preferences and requirements, while making simplified and easy to read tactile maps. Maptimizer uses a two stage optimization process to pair representations with geographic information and tune those representations to present that information more clearly. In a user study with six blind/low-vision participants, Maptimizer helped participants more successfully and efficiently identify locations of interest in unknown areas. These results demonstrate the utility of optimization techniques and generative design in complex accessibility domains that require significant customization by the end user.

A system diagram showing the maptimizer data flow setup. The inputs are geography sets, representations options, and user preferences. Geography types and representation options are paired and tuned using an optimizer. The output is a tactile map.

What Do We Mean by “Accessibility Research”?

Accessibility research has grown substantially in the past few decades, yet there has been no literature review of the field. To understand current and historical trends, we created and analyzed a dataset of accessibility papers appearing at CHI and ASSETS since ASSETS’ founding in 1994. Our findings highlight areas that have received disproportionate attention and those that are underserved— for example, over 43% of papers in the past 10 years are on accessibility for blind and low vision people. We also capture common study characteristics, such as the roles of disabled and nondisabled participants as well as sample sizes (e.g., a median of 13 for participant groups with disabilities and older adults). We close by critically reflecting on gaps in the literature and offering guidance for future work in the field.

What Do We Mean by “Accessibility Research”? A Literature Survey of Accessibility Papers in CHI and ASSETS from 1994 to 2019. Kelly Mack, Emma McDonnell, Dhruv Jain, Lucy Lu Wang, Jon E. Froehlich, and Leah Findlater In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 371, 1–18.