Orson (Xuhai) Xu (PhD, co-advised with Anind Dey)

Orson is a Ph.D. student working with Jennifer Mankoff  and Anind K. Dey in the Information School at the University of Washington – Seattle. Prior to joining UW, he obtained his Bachelor’s degrees in Industrial Engineering (major) and Computer Science (minor) from Tsinghua University in 2018. While at Tsinghua, he received Best Paper Honorable Mentioned Award (CHI 2018), Person of the Year Award and Outstanding Undergraduate Awards. His research focuses on two aspects in the intersection of human-computer interaction, ubiquitous computing and machine learning: 1) the modeling of human behavior such as routine behavior and 2) novel interaction techniques.

Visit Orson’s homepage at : orsonxu.com

Some recent projects (see more)

Interactiles

The absence of tactile cues such as keys and buttons makes touchscreens difficult to navigate for people with visual impairments. Increasing tactile feedback and tangible interaction on touchscreens can improve their accessibility. However, prior solutions have either required hardware customization or provided limited functionality with static overlays. In addition, the investigation of tactile solutions for large touchscreens may not address the challenges on mobile devices. We therefore present Interactiles, a low-cost, portable, and unpowered system that enhances tactile interaction on Android touchscreen phones. Interactiles consists of 3D-printed hardware interfaces and software that maps interaction with that hardware to manipulation of a mobile app. The system is compatible with the built-in screen reader without requiring modification of existing mobile apps. We describe the design and implementation of Interactiles, and we evaluate its improvement in task performance and the user experience it enables with people who are blind or have low vision.

XiaoyiZhang, TracyTran, YuqianSun, IanCulhane, ShobhitJain, JamesFogarty, JenniferMankoff: Interactiles: 3D Printed Tactile Interfaces to Enhance Mobile Touchscreen Accessibility. ASSETS 2018: To Appear [PDF]

Figure 2. Floating windows created for number pad (left), scrollbar (right) and control button (right bottom). The windows can be transparent; we use colors for demonstration.
Figure 4. Average task completion times of all tasks in the study.

EDigs

eDigs logoJennifer MankoffDimeji OnafuwaKirstin EarlyNidhi VyasVikram Kamath:
Understanding the Needs of Prospective Tenants. COMPASS 2018: 36:1-36:10

EDigs is a research project group in Carnegie Mellon University working on sustainability. Our research is focused on helping people find a perfect rental through machine learning and user research.

We sometimes study how our members use EDigs in order to learn how to build software support for successful social communities.

eDigs websiteScreenshot of edigs.org showing a mobile app, facebook and twitter feeds, and information about it.

Nonvisual Interaction Techniques at the Keyboard Surface

Rushil Khurana,Duncan McIsaac, Elliot Lockerman,Jennifer Mankoff Nonvisual Interaction Techniques at the Keyboard Surface, CHI 2018, To Appear

A table (shown on screen). Columns are mapped to the number row of the keyboard and rows to the leftmost column of keys, and (1) By default the top left cell is selected. (2) The right hand presses the ‘2’ key, selecting the second column (3) The left hand selects the next row (4) The left hand selects the third row. In each case, the position of the cell and its content are read out aloud.

Web user interfaces today leverage many common GUI design patterns, including navigation bars and menus (hierarchical structure), tabular content presentation, and scrolling. These visual-spatial cues enhance the interaction experience of sighted users. However, the linear nature of screen translation tools currently available to blind users make it difficult to understand or navigate these structures. We introduce Spatial Region Interaction Techniques (SPRITEs) for nonvisual access: a novel method for navigating two-dimensional structures using the keyboard surface. SPRITEs 1) preserve spatial layout, 2) enable bimanual interaction, and 3) improve the end user experience. We used a series of design probes to explore different methods for keyboard surface interaction. Our evaluation of SPRITEs shows that three times as many participants were able to complete spatial tasks with SPRITEs than with their preferred current technology.

Talk [Slides]:

Sample Press:

KOMO Radio | New screen reader method helps blind, low-vision users browse complex web pages

Device helps blind, low-vision users better browse web pages. Allen Cone

Graph showing task completion rates for different kinds of tasks in our user study
A user is searching a table (shown on screen) for the word ‘Jill’. Columns are mapped to the number row of the keyboard and rows to the leftmost column of keys. (1) By default the top left cell is selected. (2) The right hand presses the ‘2’ key, selecting the second column (3) The left hand selects the next row (4) The left hand selects the third row. In each case, the number of occurrences of the search query in the respective column or row are read aloud. When the query is found, the position and content of the cell are read out aloud.

Yuqian Sun

Yuqian Sun

Hi, I’m Yuqian Sun and I’m an exchange student from University of Tokyo, Japan. I’m interested in how technology can combine with the human cognition, persuade and as a result, change human behavior. My research field is human computer interaction and Ubiquitous Computing. I’m currently working on SPRITEs and Interactiles project.

Expressing and Reusing Design Intent in 3D Models

Megan K Hofmann, Gabriella Han, Scott E Hudson, Jennifer Mankoff. Greater Than the Sum of Its PARTs: Expressing and Reusing Design Intent in 3D Models CHI 2018, To Appear.

With the increasing popularity of consumer-grade 3D printing, many people are creating, and even more using, objects shared on sites such as Thingiverse. However, our formative study of 962 Thingiverse models shows a lack of re-use of models, perhaps due to the advanced skills needed for 3D modeling. An end user program perspective on 3D modeling is needed. Our framework (PARTs) empowers amateur modelers to graphically specify design intent through geometry. PARTs includes a GUI, scripting API and exemplar library of assertions which test design expectations and integrators which act on intent to create geometry. PARTs lets modelers integrate advanced, model specific functionality into designs, so that they can be re-used and extended, without programming. In two workshops, we show that PARTs helps to create 3D printable models, and modify existing models more easily than with a standard tool.

Picture of 3D models and a printout

Ying Wang

My name is Ying Wang and I am a junior double majoring in Computer Science and Applied & Computational Mathematical Science. I am interested in the communication between Nature, Human and Technology. She is fascinated by the unlimited potential and profound meaning revealed by data communication and how human-centered design plays an essential role in bridging the gaps in between human expression and technology realization. I am currently working on the Don’t Touch My Belly project in the lab.

Sabrina Pearson

Sabrina Pearson

I’m a freshman majoring in Computer Science, from Kirkland Washington. In the lab, I am currently working on the Don’t Touch My Belly project, a fabrication project that aims to explore themes of consent, consisting of a maturity shirt that reacts the wearer’s pregnant belly is touched without asking. I am still exploring the many fields of computer science, and am passionate about using technology to solve human problems.

Estelle Jiang

Hi, there! My name is Estelle Jiang and I’m currently a junior at the University of Washington majoring in Informatics, with a concentration in Human Computer Interaction. I’m passionate about exploring & creating the best experience for the user and designing sustainably and meaningful interactions between people, technology, and products. I think design is not only about how it looks like, but also what is inside.I have been working on Don’t Touch My Belly project in Make4All Lab.