3D Printing in a Range of Materials

Required

Soft Objects:

Printing Teddy Bears: A Technique for 3D Printing of Soft Interactive Objects (ACM CHI 2014), Scott E. Hudson 

Carbon Fiber at scale:

(watch through about 2:30, and then from about 5:15 onward. 6:30 explains the process)

Food: (just watch the videos)

Inflatables: 

Printflatables: Printing Human-Scale, Functional and Dynamic Inflatable Objects (ACM CHI 2017) Harpreet Sareen, Udayan Umapathi, Patrick Shin, Yasuaki Kakehi, Jifei Ou, Pattie Maes, Hiroshi Ishii. 

Optional others: 

1 printer, many materials

xPrint: A Modularized Liquid Printer for Smart Materials Deposition (ACM CHI 2016) 
Guanyun Wang, Lining Yao, Wen Wang, Jifei Ou, Chin-Yi Cheng, and Hiroshi Ishii 

Sitthi-Amorn, P., Ramos, J. E., Wangy, Y., Kwan, J., Lan, J., Wang, W., & Matusik, W. (2015). MultiFab: a machine vision assisted platform for multi-material 3D printing. ACM Transactions on Graphics (TOG), 34(4), 129.

Vidimče, K., Wang, S. P., Ragan-Kelley, J., & Matusik, W. (2013). OpenFab: a programmable pipeline for multi-material fabrication. ACM Transactions on Graphics (TOG)32(4), 136.

Motors: 

A 3D printer for interactive electromagnetic devicesHuaishu Peng, François Guimbretière, James McCann, and Scott Hudson 

Knitting:

Igarashi, Yuki, Takeo Igarashi, and Hiromasa Suzuki. “Knitty: 3D Modeling of Knitted Animals with a Production Assistant Interface.” In Eurographics (Short Papers), pp. 17-20. 2008.

Igarashi, Y., & Igarashi, T. (2009). Designing plush toys with a computerCommunications of the ACM52(12), 81-88.

A Compiler for 3D Machine Knitting

Fabric:

A Layered Fabric 3D Printer for Soft Interactive Objects (ACM CHI 2015) 
Huaishu Peng, Jennifer Mankoff, Scott E. Hudson, and James McCann 

DressUp: a 3D interface for clothing design with a physical mannequin (ACM TEI 2012) 
Amy Wibowo, Daisuke Sakamoto, Jun Mitani, and Takeo Igarashi 

and The Hybrid Bricolage: Bridging Parametric Design with Craft through Algorithmic Modularity (ACM CHI 2016) Tamara Anna Efrat, Moran Mizrahi, and Amit Zoran:

Basketry:

Wooden Furniture:

Design and fabrication by example (ACM SIGGRAPH 2014) 
Adriana Schulz, Ariel Shamir, David I. W. Levin, Pitchaya Sitthi-amorn, and Wojciech Matusik 

Fabrication-aware Design with Intersecting Planar Pieces (EUROGRAPHICS 2013) 
Yuliy Schwartzburg, and Mark Pauly

SketchChair: an all-in-one chair design system for end users (ACM TEI 2011) 
Greg Saul, Manfred Lau, Jun Mitani, and Takeo Igarashi 

3D Printing for Health

Basic Research:

Applications

3D Printing and Sustainability

Sustainability of 3D printing

Uses of 3D printing in achieving a sustainable world

3D Printing for Education

An article blurring 3DP, education, and social good: Loy, Jennifer. “eLearning and eMaking: 3D Printing Blurring the Digital and the Physical.” Education Sciences 4, no. 1 (2014): 108-121.

Irwin, J. L., D. E. Oppliger, J. M. Pearce, and G. Anzalone. “Evaluation of RepRap 3D Printer Workshops in K-12 STEM. 122nd ASEE 122nd ASEE Conf.” Proceedings, paper ID 12036 (2015).

Buechley, Leah, Mike Eisenberg, Jaime Catchen, and Ali Crockett. “The LilyPad Arduino: using computational textiles to investigate engagement, aesthetics, and diversity in computer science education.” In Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 423-432. ACM, 2008.

Schelly, Chelsea, Gerald Anzalone, Bas Wijnen, and Joshua M. Pearce. “Open-source 3-D printing technologies for education: Bringing additive manufacturing to the classroom.” Journal of Visual Languages & Computing 28 (2015): 226-237.

 

Observe a Maker

Find someone in (or out of) the class who has to repair or create something.

  • Ask them if you can watch them work on it. Ask them if you can video and/or take photos + audio record them.
  • Before you watch them, write down your thoughts about how they will do this (like a recipe for the goal they have told you).
  • Watch and record what they do. Ask lots of questions. Base your approach on our discussion and practice in class.
  • The same day, write a short summary of what they did, noting in particular any trouble they ran into, and things that differed from your predictions
  • By the assignment due date, turn in a document containing your before and after thoughts and some illustrative pictures.

Build a 3D Printer

Learning Objectives:
– Practice assembling a moderately complex electromechanical device
– Learn the details of how your printer operates

Build a 3D printer from a kit. For this assignment you are being asked to demonstrate the basic operation of your machine by doing the following:

  • Moving each axis (x, y and z) independently
  • Homing (all axis)
  • Printing a test object — specifically, the “0.5mm-thin-wall.stl” file from the “Essential Calibration Set” (posted to Thingiverse by coasterman as: http://www.thingiverse.com/thing:5573).

Turning Your Project In

This assignment will be peer graded on a pass/fail basis. To turn in your completed assignment find another student in class to certify that you have fulfilled the requirements above and have them send me an email by the end of the day the assignment is due.

 

[credit for this assignment goes to Scott Hudson, whose plan & text I borrowed]

Case Study: 3D Printing in the Developing World

Readings:

There is so much more on this topic! Some of the readings I set aside (possibly for a second case study later this quarter) include:

3D Printed Prosthetics: Case Study

Readings

  • Megan Hofmann, Julie Burke, Jon Pearlman, Goeran Fiedler, Andrea Hess, Jon Schull, Scott E. Hudson, Jennifer Mankoff: Clinical and Maker Perspectives on the Design of Assistive Technology with Rapid Prototyping Technologies. ASSETS 2016: 251-256
  • Cynthia L. Bennett, Keting Cen, Katherine Muterspaugh Steele, Daniela K. Rosner: An Intimate Laboratory?: Prostheses as a Tool for Experimenting with Identity and Normalcy. CHI 2016: 1745-1756

Optional: 

  • Jeremiah Parry-Hill, Patrick C. Shih, Jennifer Mankoff, Daniel Ashbrook: Understanding Volunteer AT Fabricators: Opportunities and Challenges in DIY-AT for Others in e-NABLE. CHI 2017: 6184-6194